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Introduction 
In this task, I implemented a script to extract runtime features from executables using APIMiner. These 

features were then added static features used in Task 7.3HD, and used to train the same models as used 

in 7.3HD. This report presents my steps and findings, as well as an in-depth comparison with the general 

performance of the models here compared to in Task 7.3HD. In Section 1, I detail and explain my 

approach in collecting dynamic run-time features into raw log data. In Section 2, I describe how I 

processed this collected raw data into a workable dataset, as well as synchronizing it with previous work. 

In Section 3, I mostly present the raw results from the ML models; with the exception of the subsection 

“Hybrid Features”, I detail my data processing steps to approach this task from three other vectors: 

normalization, use of only dynamic features, and use of only static features (7.3HD). Then, in the 

subsection “Discussion & Analysis”, I present a comparison among the related techniques, providing 

statistical evidence behind my reasoning.  

 



Subtask 1: Dataset Creation 

Honeypot VM Environment 
Sophisticated malware has the ability to detect virtualized and sandboxed environments. Hence my first 

step is to make the Flare VM seem like a normal machine than a VM. To achieve this, I just downloaded 

random applications, as well as created and populated random directories with sample documents. I also 

wanted to customize the wallpaper, but the option is disabled. I also increased the number of processors 

to 4 and memory to 8GB in case there are malware that take them into account. 

 

Figure 1 
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Runtime API Function Extraction 

 

Figure 4 
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Figure 6 

 

The method of extracting API functions called at run time is relatively straightforward. There are three 

main parts: using APIMiner to hook monitoring into an executable’s process flow; terminating the process 

and child processes after a set timeout to prevent APIMiner from stalling; and applying this to every single 

file in a scalable and reliable way. Each of these is discussed in more detail below. 

The main player is our api_miner() function. This function uses the subprocess library to call upon 

APIMiner and sets a target executable, which is passed to it as a parameter when it is called. We assume 

by default that the target is 64-bit executable, and we use the corresponding APIMiner version 

accordingly. In the case that the executable is 32bit, an error will occur. Hence the exception block then 

tries to use the 32-bit version.  

The APIMiner version used here is from [1], as it supports 64-bit executables, unlike the version used in 

class. It is configured via the apiminer_config.txt file to output logs at 

“C:\Users\flare\Documents\<ben/mal>\<ben-/mal->log”, where ‘ben’ and ‘mal’ represent benign and 

malicious executables respectively.  



 

Figure 7 

Now, not all executables are able to run on the machine. Whereas some executables cannot run due to 

missing DLL files, others would run and stall (such as malware that requires user interaction); hence no 

data is extracted. APIMiner will stall as the execution itself stalls. This creates another problem – over 

2000+ samples are to be run, and if a large majority of them stall then the machine will crash. Hence, we 

need a method to ensure that everything eventually gets run and terminates at least once. 

This is the aim of the logger_logic() function. It takes as input a directory, which in this case is the 

configured output directory above, and applies the following to every file found. This version of APIMiner 

saves file with a “.nckh” extension. Likewise, generated log files always the form of 

“apiminer_traces.<integer>.pid_<process id>.nckh” which we take advantage of to locate the process ID 

(pid) of every executed program. Essentially, the function locates this pid, terminates the process and its 

children, and then renames rhe file with a “.txt” extension to turn it into a text file. 

Finally, now that we know how to treat each file, we need to scale this to every other executable. As we 

are aiming to form a hybrid dataset, we must ensure a one-to-one mapping of the static and dynamic 

features. However, not all executables area valid PEs, only at least 90% of all given executables could have 

their static features properly extracted and turned into a dataframe.  



 

Figure 8 

Thus, for the current directory, the line “if filename in mal_files:” acts as a filter to only execute relevant 

applications; that is, if the file name exists in the static dataset. Afterwards, we use threading to call 

multiple instances of the api_miner() function at the same time. To keep things running smoothly, we run 

this for 100 executables, and this is kept track of by the count variable. Next, after 100 executables have 

been spawned and hooked into by APIMiner, we then wait for 60 seconds before calling the 

logger_logic() function. This is our hard timeout, guaranteeing that every program runs for at least 60 

seconds, as some malware use delay functions to evade detection. 

After 60 seconds, logger_logic() goes to the target directory, and apply what was previously discussed on 

every single file that ends with “.nchk ”; killing every active process (and descendants) and turning the 

files into text files. Once completed, the next batch of 100 executables is run, and this repeats until the 

entire directory of executable is covered. This provides with a directory of text log files. 



 

Figure 9 

The amount of processed programs, that is, from executable to static features to dynamic features, 

decreases at every stage. Around ~90% of all downloaded executables had extractable static features, 

and afterwards only around ~17-20% of these can be executed. Thus, from an initial set of 2100 

executables, 1941 of them had static features extracted, and then 398 of these could be executed 

successfully; thus, only around ~19% of the original set of malware made it to the final stage.  



Subtask 2: Hybrid Feature Matrix Creation 

Log Files to Dataset (Dynamic) 

 

Figure 10 

The dynamic_dataset_maker() function is what we use to parse the raw log files into datasets, and takes 

as input the directory of log files from before (to process every single one). This function calls the 

api_extractor() function, which is the main logical component and extraction process. It is given a file, 

which is the full path to that file.  



 

Figure 11 

Firstly, it needs to get the file’s name (so that we know which sample it corresponds to in the static 

dataset). Luckily this is in the first line of every output file in the form of the full path. Hence, we use regex 

to extract the first 64 alphanumeric hex characters just before and including the ‘.exe’ extension, which is 

the SHA256 hash of the executable.  

INPUT OUTPUT 
<__notification__>-<0,0x0000000000000000> 
__process__([time_low]-971731694, [time_high]31182390, [pid]9416, 
[ppid]3220, [module_path]"C:\Users\flare\Downloads\mal\mal-
pre\00b65f272f9cc1d013a0e3cd24024299ef3eee6c87d35e0de9996ca
97f1cf037.exe", [command_line]""C:\Users\flare\Downloads\mal\mal-
pre\00b65f272f9cc1d013a0e3cd24024299ef3eee6c87d35e0de9996ca
97f1cf037.exe" ", [is_64bit]1, [track]1) 

00b65f272f9cc1d013a0e3cd24024299ef3eee6c87d35e0de9996ca
97f1cf037.exe 

 

It is observed that lines in the log file that does not contain called API fcntions are ones with 

“<__notification__>”, hence the function then looks for those lines. It then splits the line into two parts 

after the first space; the second (indexed [1]) part is when the API function shows up.  

INPUT OUTPUT 
<__notification__>-<0,0x0000000000000000> 
__action__([action]"gatherer") 

NULL 

<process>-<0,0x0000000000000000> 
NtAllocateVirtualMemory([process_handle]0xFFFFFFFF
FFFFFFFF, [base_address]0x0000000001950000, 
[region_size]0x0000000000027000, 
[allocation_type]12288, [protection]64, 
[stack_pivoted]0, [stack_dep_bypass]0, 
[heap_dep_bypass]0, [process_identifier]9416) 

<process>-
<0,0x00000000000000
00> 

NtAllocateVirtualMemory([process_handle]0xFFFFFFFF
FFFFFFFF, [base_address]0x0000000001950000, 
[region_size]0x0000000000027000, 
[allocation_type]12288, [protection]64, 
[stack_pivoted]0, [stack_dep_bypass]0, 
[heap_dep_bypass]0, [process_identifier]9416) 

 

In this line we still need to use regex to extract the actual API function. Hence, we extract from the 

second part the first characters just the before the first “(”. 

INPUT OUTPUT 
NtAllocateVirtualMemory([process_handle]0xFFFFFFFFFFFFFFFF, 
[base_address]0x0000000001950000, 
[region_size]0x0000000000027000, [allocation_type]12288, 
[protection]64, [stack_pivoted]0, [stack_dep_bypass]0, 
[heap_dep_bypass]0, [process_identifier]9416) 

NtAllocateVirtualMemory 

 



Thus, we have now extracted one API function called at runtime. Now, for the dynamic dataset, simply 

knowing that an API function is called is not significant enough to indicate malicious behavior. Hence, 

counting adds more importance to the dynamic features. Within the same api_extractor() function, 

before we did any extracting, we actually created a dictionary object, with the key-value pair “sample”: 

filename. This represents our “sample” column, which allows us to know the corresponding samples in 

the static dataset. For every extracted API function, we check whether or not it exists as a key in our 

dictionary; if it is, then the value for that key is incremented by 1; if not, then it is added to the dictionary 

as a key, with the value set to 1. 

NtAllocateVirtualMemory in dict{}? 

Yes dict { 
    … 
   “NtAllocateVirtualMemory” : n + 1, 
    … 
} 

No dict { 
    … 
   “NtAllocateVirtualMemory”: 1 
    … 
} 

 

This is repeated for every single line, and thus every single API function for the current file. Thus, a record 

is kept every time an API function call is encountered, Once compete, the api_extractor() function returns 

the same dictionary object, now populated with 1-D column values: 

sample NtAllocateVirtualMemory NtProtectVirtualMemory … RegOpenKeyExW 

00b…037.exe 12 3 … 2 

 

This represents what a row would look like in our final dataset. The returned dictionary object above is 

appended to an arrow, thus creating an list of rows. After every file has been processed, we turn this into 

a dataframe, making sure to fill empty spaces with 0, as pandas aligns every column properly and stacks 

every row. 

sample NtAllocateVirtualMemory NtDeviceIoControlFile … RegQueryValueExW 

00b…037.exe 12 0 … 3 

00c…112.exe 2 23 … 0 

… … … … … 

ff9…a2d.exe 78 123 … 111 



 

Figure 12 

 

Figure 13 



Combining with Static Dataset (Hybrid) 

 

Figure 14 

From the above discussion, we know have a dataset of dynamic features. Now, we must ensure a one-to-

one mapping with our static dataset. First, we import the static dataset. Then, we choose only the rows 

whose sample value (i.e., file name) exists in our dynamic dataset: 

Static  Dynamic  Hybrid 

sample lib.dll  
 
 
     +  

sample LdrLoadDll  
 
 
     →   

sample lib.dll LdrLoadDll 

000..432.exe … 000..432.exe … 000..432.exe … … 

0ab…c31.exe … bbc…11a.exe … bbc…11a.exe … … 

bbc…11a.exe … … … … … … 

b59…aac.exe …  … …  … … … 

ddc…3ae.exe …  ddc…3ae.exe …  ddc…3ae.exe … … 

… …  … …  … … … 

 

Thus, the static dataset is reduced to be the same size (row-wise) as the dynamic dataset. Order is also 

preserved; hence we can simply combine the two tables column-wise.  



 

Figure 15 

Finally, we concatenate the two data frames into one hybrid dataset. Shown above is the hybrid dataset 

for the malware, and the process till now is the exact same and repeated for the benign executables.  



 

Figure 16 

As there are more benign executable, we under sample the dataset to get 348 random records. 



 

Figure 17 

Finally, we combine everything row-wise and filling empty cells with 0s. This is our final hybrid dataset, 

complete with static and dynamic features for both malicious and benign executables. 

 

Subtask 3: Machine Learning 

Hybrid Features 
Using the dataset obtained above, four machine learning classification models were trained, tested, and 

evaluated. In this section, we explore the dataset in its entirety, that is, without normalization. The 

following screenshots are just to demonstrate the graphical outputs and raw metrics. A summary table is 

provided in the Discussion subsection, where a more compressive evaluation is presented.  



Decision Tree 
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Feature Selection 
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Random Tree 
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Feature Selection 
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SVC 
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Feature Selection 
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Logistic Regression 
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Feature Selection 
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Discussion 

Model Method Accuracy Precision-
Recall 

ROC Selected Features 

Decision 
Tree 

Model-based 0.962 

0.964 0.963 

'EVP_sha512' 
'K32EnumProcessModules' 
'LookupPrivilegeValueW' 
'TerminateProcess' 
'_commode' 
'_o___p___argc' 
'_o__exit' 
'_o__wcsicmp' 
'_wcsicmp' 
'api-ms-win-core-processthreads-l
1-1-1.dll' 
 

SFS-Forward 0.967 

0.969 0.967 

'K32EnumProcessModules' 
'TerminateProcess' 
'_commode' 
'_o__exit' 
'api-ms-win-core-processthreads-l
1-1-1.dll' 
 

SFS-Backward 0.967 

0.969 0.967 

'LookupPrivilegeValueW' 
'TerminateProcess' 
'_commode' 
'_o__exit' 
'api-ms-win-core-processthreads-l
1-1-1.dll' 
 

NONE 0.962 0.97 0.961 N/A 

Random 
Forest 

Model-based 0.976 

0.977 0.977 

'?terminate@@YAXXZ' 
'LdrLoadDll' 
'TerminateProcess' 
'_XcptFilter' 
'__C_specific_handler' 
'_cexit' 
'_exit' 
'_fmode' 



'_vsnwprintf' 
'api-ms-win-core-errorhandling-l1
-1-0.dll' 
 

SFS-Forward 0.971 

0.974 0.972 

'?terminate@@YAXXZ' 
'LdrLoadDll' 
'TerminateProcess' 
'__C_specific_handler' 
'api-ms-win-core-errorhandling-l1
-1-0.dll' 
 

SFS-Backward 0.971 

0.974 0.972 

'LdrLoadDll' 
'__C_specific_handler' 
'_exit' 
'_fmode' 
'api-ms-win-core-errorhandling-l1
-1-0.dll' 
 

NONE 0.981 0.982 0.982 N/A 

SVC 

Model-based 0.986 

0.989 0.985 

'?terminate@@YAXXZ' 
'DeleteCriticalSection' 
'ExitProcess' 
'KDSTUB.dll' 
'KERNEL32.dll' 
'KdInitializeLibrary' 
'LdrLoadDll' 
'LoadLibraryA' 
'RtlPcToFileHeader' 
'VirtualQuery' 
'_CorExeMain' 
'_XcptFilter' 
'mscoree.dll' 
'num sections' 
'mismatched sections' 
'non standard sections' 
'packed' 
'NtProtectVirtualMemory' 
 

SFS-Forward 0.976 

0.986 0.974 

'LdrLoadDll' 
'LoadLibraryA' 
'_CorExeMain' 
'packed' 
'NtProtectVirtualMemory' 
 

SFS-Backward 0.976 

0.983 0.975 

'LdrLoadDll' 
'RtlPcToFileHeader' 
'num sections' 
'non standard sections' 
'NtProtectVirtualMemory' 
 

NONE 0.99 0.99 0.991 N/A 

Logistic 
Regression 

Model-based 0.981 

0.986 0.98 

'?terminate@@YAXXZ' 
'AddVectoredExceptionHandler' 
'EventRegister' 
'FindFirstFileW' 
'KDSTUB.dll' 
'LdrLoadDll' 
'LoadLibraryA' 
'RtlPcToFileHeader' 
'VirtualQuery' 
'WaitForSingleObjectEx' 
'_CorExeMain' 
'_XcptFilter' 
'api-ms-win-core-errorhandling-l1
-1-0.dll' 
'api-ms-win-core-profile-l1-1-0.d
ll' 
'mscoree.dll' 
'non standard sections' 
'packed' 
'NtProtectVirtualMemory' 
 

SFS-Forward 0.976 

0.986 0.974 

'LdrLoadDll' 
'LoadLibraryA' 
'_CorExeMain' 
'packed' 
'NtProtectVirtualMemory' 
 

SFS-Backward 0.952 

0.972 0.948 

'LdrLoadDll' 
'VirtualQuery' 
'mscoree.dll' 
'packed' 
'NtProtectVirtualMemory' 
 

NONE 0.99 0.992 0.99 N/A 

 



 

As shown in the table and graph, SVC and Logistic Regression performed similarly high, and 

outperforming the rest. SVC is slightly better than Logistic Regression in the ROC metric, which indicates 

the model’s slight superiority in the determine true and false positives and negatives at thresholds. In this 

case, given the diversity of the unscaled dataset as well, the binary classification task involved here is 

probabilistic, hence SVC was able to make slightly better probability predictions. While better in terms of 

accuracy, SVC is also slower than most classification algorithms, hence there is also this tradeoff to 

consider – that is, learning times and performance.  

 

Hybrid Features (Normalization of Continuous Features) 

Methodology 

The static part of the dataset is mostly binary; either 1 for the presence of an imported library or API 

function, and 0 otherwise. However, there are also continuous and countable features, such as entropy 

and section mismatches. Not to mention that the dynamic part consists of the number of times a function 

is called, up to larger magnitudes than a 1 or 0. Hence, this section explores how normalization of these 

features can affect the models’ performances. 



 

Figure 46 

To begin, first we read form a dataset that contains only the dynamic features of both malicious and 

benign files. 

 

Figure 47 

Then, from the current hybrid dataset in memory, we extract all the records that are to do with PE 

information – this is the non-binary part of our static dataset. 



 

Figure 48 

Then, we simply combine them so that this can scaled separately from the binary set. This was chosen 

because the binary dataset indicates presence of something and is thus of high importance, and should 

be preserved. Besides, normalizing the entire table will result in more or less the same performance. 

 

Figure 49 

Then, we drop all the columns in the hybrid dataset that are continuous features. What is left is pure 

binary data.  



 

Figure 50 

Finally, we scale the continuous part, then combine the datasets again. Now we have a hybrid dataset 

where the continuous features lie between 0 and 2. We use the MinMaxScalar for this. This range was 

chosen because of the nature of the rest of the dataset containing values either 1 or 0. Thus, anything 

above 1 will be in decimal form, and the magnitude close to 2 reflects their magnitude; this maximum is 1 

above 1 the same way 1 is 1 above 0, hence the range in the model’s learning is appropriately affected. 0 

is the minimum limit so that the 0s in the dynamics are not affected (their absence is still represented). 

Other scaler methods were used and considered, such as changing the range to ‘from 0 to 10’, and the 

Standard Scalar. Consider the following feature correlation graphs: 

 

Figure 51: PCA Feature Correlation for the original hybrid dataset  



 

Figure 52: PCA Feature Correlation for the original hybrid dataset when scaled using the StandardScalar 

 

Figure 53: PCA Feature Correlation for the original hybrid dataset using the MinMaxScaler with the range 0 to 10 



 

Figure 54: PCA Feature Correlation for the original hybrid dataset using the MinMaxScaler with the range 0 to 2 

Clearly the most distinct among them is the MinMaxScaler of the 0 to 2 range, as the PCA decomposition 

was able to separate distinctly more in this than the rest. The function used to generate this is provided 

and explained in the Appendix. 

Results 

Model Method Accuracy Precision-
Recall 

ROC Selected Features 

Decision 
Tree 

Model-based 0.914 0.931 

0.912 

'?terminate@@YAXXZ' 
'DebugBreak' 
'RtlLookupFunctionEntry' 
'TlsGetValue' 
'_vsnwprintf' 
'api-ms-win-core-libraryloader-l1
-2-0.dll' 
'api-ms-win-core-registry-l2-1-0.
dll' 
'NtMapViewOfSection' 
'LdrLoadDll' 
'mean_entropy' 
 

SFS-Forward 0.957 

0.96 0.959 

'?terminate@@YAXXZ' 
'DebugBreak' 
'RtlLookupFunctionEntry' 
'TlsGetValue' 
'api-ms-win-core-libraryloader-l1
-2-0.dll' 
 

SFS-Backward 0.943 

0.947 0.945 

'?terminate@@YAXXZ' 
'RtlLookupFunctionEntry' 
'TlsGetValue' 
'api-ms-win-core-libraryloader-l1
-2-0.dll' 
'LdrLoadDll' 
 

NONE 0.933 0.95 0.93 N/A 

Random 
Forest 

Model-based 0.962 

0.966 0.962 

'?terminate@@YAXXZ' 
'GetCurrentProcessId' 
'HeapSetInformation' 
'QueryPerformanceCounter' 
'__set_app_type' 
'__wgetmainargs' 
'_exit' 
'api-ms-win-core-libraryloader-l1
-2-0.dll' 
'memset' 
'LdrLoadDll' 
 



SFS-Forward 0.943 

0.947 0.945 

'?terminate@@YAXXZ' 
'GetCurrentProcessId' 
'HeapSetInformation' 
'api-ms-win-core-libraryloader-l1
-2-0.dll' 
'memset' 
 

SFS-Backward 0.957 

0.963 0.957 

'__set_app_type' 
'_exit' 
'api-ms-win-core-libraryloader-l1
-2-0.dll' 
'memset' 
'LdrLoadDll' 
 

NONE 0.976 0.979 0.976 N/A 

SVC 

Model-based 0.957 

0.965 0.956 

'ExitProcess' 
'KDSTUB.dll' 
'KERNEL32.dll' 
'KdInitializeLibrary' 
'_CorExeMain' 
'mscoree.dll' 
'packed' 
'NtQuerySystemInformation' 
'NtCreateSection' 
'NtProtectVirtualMemory' 
'LdrLoadDll' 
'LdrUnloadDll' 
'GetSystemInfo' 
'num sections' 
'mismatched sections' 
'non standard sections' 
 

SFS-Forward 0.923 

0.943 0.92 

'packed' 
'NtQuerySystemInformation' 
'NtCreateSection' 
'LdrLoadDll' 
'LdrUnloadDll' 
 

SFS-Backward 0.933 

0.942 0.933 

'ExitProcess' 
'KERNEL32.dll' 
'_CorExeMain' 
'NtQuerySystemInformation' 
'non standard sections' 
 

NONE 0.971 0.974 0.972 N/A 

Logistic 
Regression 

Model-based 0.919 

0.934 0.917 

'ExitProcess' 
'KDSTUB.dll' 
'KdInitializeLibrary' 
'packed' 
'NtQuerySystemInformation' 
'NtOpenSection' 
'NtCreateSection' 
'NtProtectVirtualMemory' 
'LdrLoadDll' 
'LdrUnloadDll' 
'GetSystemInfo' 
'max_entropy' 
'mean_entropy' 
'non standard sections' 
 

SFS-Forward 0.919 

0.94 0.915 

'packed' 
'NtQuerySystemInformation' 
'NtCreateSection' 
'LdrLoadDll' 
'LdrUnloadDll' 
 

SFS-Backward 0.923 

0.934 0.924 

'NtQuerySystemInformation' 
'NtOpenSection' 
'NtCreateSection' 
'NtProtectVirtualMemory' 
'LdrLoadDll' 
 

NONE 0.99 0.99 0.991 N/A 

 



Dynamic Only 

Methodology 

 

Figure 55 

We wish to see how the models perform using only dynamic data, thus we want to create ensure 

separate datasets for both malware and benign executables. From the discussion in Subtask 2, here we’re 

working with the undersampled benign dataset. In the above, we simply extract all the records in the 

dynamic dataset whose samples exist in our undersampled benign dataset. We do this because the 

dynamic dataset contains many other benign programs, and the undersampled benign dataset contains 

also static features; hence we cannot get only the dynamic features of the undersampled so easily in a 

single move.  

 

Figure 56 

Finally, we combine this with the dynamic dataset for the malicious executables; hence obtaining a 

dataset for both malware and benign files but which only contain the dynamic features. 



 

 

Results 

Model Method Accuracy Precision-
Recall 

ROC Selected Features 

Decision 
Tree 

Model-based 0.938 

0.955 0.935 

'NtAllocateVirtualMemory' 
'LdrGetDllHandle' 
'NtQuerySystemInformation' 
'NtProtectVirtualMemory' 
'NtClose' 
'NtDeviceIoControlFile' 
'LdrLoadDll' 
'NtTerminateProcess' 
'NtCreateFile' 
'RegEnumValueW 
 

SFS-Forward 0.957 

0.969 0.955 

'NtProtectVirtualMemory' 
'NtDeviceIoControlFile' 
'LdrLoadDll' 
'NtTerminateProcess' 
'RegEnumValueW' 
 

SFS-Backward 0.914 

0.925 0.915 

'LdrGetDllHandle' 
'NtProtectVirtualMemory' 
'LdrLoadDll' 
'NtCreateFile' 
'RegEnumValueW' 
 

NONE 0.914 0.935 0.91 N/A 

Random 
Forest 

Model-based 0.947 

0.963 0.944 

'NtFreeVirtualMemory' 
'NtAllocateVirtualMemory' 
'LdrGetDllHandle' 
'NtQueryAttributesFile' 
'NtProtectVirtualMemory' 
'NtClose' 
'LdrLoadDll' 
'NtOpenKey' 
'NtQueryValueKey' 
'GetFileType' 
 

SFS-Forward 0.967 

0.978 0.964 

'NtFreeVirtualMemory' 
'LdrGetDllHandle' 
'NtProtectVirtualMemory' 
'LdrLoadDll' 
'NtQueryValueKey' 
 

SFS-Backward 0.971 

0.98 0.97 

'NtFreeVirtualMemory' 
'NtQueryAttributesFile' 
'NtProtectVirtualMemory' 
'LdrLoadDll' 
'NtQueryValueKey' 
 

NONE 0.952 0.972 0.948 N/A 

SVC 

Model-based 0.962 

0.972 0.96 

'NtFreeVirtualMemory' 
'NtAllocateVirtualMemory' 
'LdrGetDllHandle' 
'NtOpenSection' 
'NtQueryAttributesFile' 
'NtOpenFile' 
'NtCreateSection' 
'NtMapViewOfSection' 
'NtProtectVirtualMemory' 
'NtClose' 
'LdrLoadDll' 
'NtOpenKey' 
'NtQueryValueKey' 
'NtTerminateProcess' 
'RegOpenKeyExW' 
'RegQueryValueExW' 
'RegCloseKey' 
'NtCreateMutant' 
'WSAStartup' 
'GetFileAttributesW' 
'GetFileType' 
'FindResourceExW' 
'NtOpenThread' 
'NtQueryInformationFile' 
'LookupPrivilegeValueW' 
'GetSystemDirectoryW' 
'RegEnumKeyExW' 
'GetSystemWindowsDirectoryW' 



'NtReadFile' 
'RegQueryInfoKeyW' 
 

SFS-Forward 0.923 

0.933 0.925 

'NtOpenSection' 
'NtQueryAttributesFile' 
'LdrLoadDll' 
'NtQueryValueKey' 
'RegQueryInfoKeyW' 
 

SFS-Backward 0.919 

0.949 0.912 

'NtOpenSection' 
'NtProtectVirtualMemory' 
'LdrLoadDll' 
'NtOpenKey' 
'NtQueryInformationFile' 
 

NONE 0.957 0.969 0.955 N/A 

Logistic 
Regression 

Model-based 0.923 

0.939 0.921 

'NtFreeVirtualMemory' 
'NtAllocateVirtualMemory' 
'LdrGetDllHandle' 
'NtQuerySystemInformation' 
'NtOpenSection' 
'NtQueryAttributesFile' 
'NtOpenFile' 
'NtCreateSection' 
'NtMapViewOfSection' 
'NtProtectVirtualMemory' 
'NtClose' 
'NtDeviceIoControlFile' 
'LdrLoadDll' 
'NtOpenKey' 
'NtQueryValueKey' 
'NtTerminateProcess' 
'RegOpenKeyExW' 
'RegQueryValueExW' 
'NtCreateMutant' 
'WSAStartup' 
'GetFileAttributesW' 
'GetFileType' 
'NtCreateFile' 
'NtOpenThread' 
'NtQueryInformationFile' 
'RegEnumKeyExW' 
'NtReadFile' 
'RegQueryInfoKeyW' 
 

SFS-Forward 0.88 

0.919 0.872 

'LdrLoadDll' 
'NtQueryValueKey' 
'RegQueryValueExW' 
'NtReadFile' 
'RegQueryInfoKeyW' 
 

SFS-Backward 0.933 

0.941 0.934 

'NtOpenSection' 
'NtQueryAttributesFile' 
'LdrLoadDll' 
'NtQueryValueKey' 
'NtQueryInformationFile' 
 

NONE 0.895 0.911 0.895 N/A 

 



Static Only 

Methodology 

 

Figure 57 

Although we could have used the dataset from 7.3HD, note that the not all malware were excutabled. 

Hence, we need to extract them here again separately. Likewise, the dataset in 7.3HD was larger (990 

rows) compared to this tasks at 698; hence, we also need to under sample so that the compassion 

remains fair for all the methods discussed above. The method to get only the static features is rather 

simple. As we already have a dataset of dynamic features, we simply find these columns in the hybrid 

dataset and drop them.  



 

Figure 58 

 

Figure 59 

Thus, we are left with just the static dataset. Note that the labeling operation on line 12 is because we 

had dropped it earlier in line 11.  

Results 

Model Method Accuracy Precision-
Recall 

ROC Selected Features 

Decision 
Tree 

Model-based 0.938 

0.955 0.935 

'EVP_Cipher' 
'RtlFreeHeap' 
'VirtualQuery' 
'_amsg_exit' 
'_c_exit' 
'_lock' 
'getservbyname' 
'ntdll.dll' 
'strerror' 
'strftime' 
 

SFS-Forward 0.957 

0.969 0.955 

'EVP_Cipher' 
'VirtualQuery' 
'_amsg_exit' 
'_c_exit' 
'ntdll.dll' 
 



SFS-Backward 0.914 

0.925 0.915 

'EVP_Cipher' 
'VirtualQuery' 
'_amsg_exit' 
'_c_exit' 
'ntdll.dll' 
 

NONE 0.914 0.935 0.91 N/A 

Random 
Forest 

Model-based 0.947 

0.963 0.944 

'?terminate@@YAXXZ' 
'GetCurrentProcess' 
'GetModuleHandleW' 
'GetSystemTimeAsFileTime' 
'HeapSetInformation' 
'Sleep' 
'__C_specific_handler' 
'__setusermatherr' 
'_initterm' 
'exit' 
 

SFS-Forward 0.967 

0.978 0.964 

'?terminate@@YAXXZ' 
'GetCurrentProcess' 
'GetModuleHandleW' 
'__setusermatherr' 
'_initterm' 
 

SFS-Backward 0.971 

0.98 0.97 

'?terminate@@YAXXZ' 
'GetSystemTimeAsFileTime' 
'__C_specific_handler' 
'__setusermatherr' 
'exit' 
 

NONE 0.952 0.972 0.948 N/A 

SVC 

Model-based 0.962 

0.972 0.96 

'?terminate@@YAXXZ' 
'ConvertStringSecurityDescriptorT
oSecurityDescriptorW' 
'DeleteCriticalSection' 
'EncodePointer' 
'EtwEventEnabled' 
'EtwEventRegister' 
'EtwEventUnregister' 
'EtwEventWrite' 
'ExitProcess' 
'KDSTUB.dll' 
'KERNEL32.dll' 
'KdInitializeLibrary' 
'LoadLibraryA' 
'OpenProcessToken' 
'PrivilegeCheck' 
'RegFlushKey' 
'RegGetValueW' 
'RtlAllocateHeap' 
'RtlPcToFileHeader' 
'RtlReAllocateHeap' 
'_CorExeMain' 
'_XcptFilter' 
'mscoree.dll' 
'ntdll.dll' 
'num sections' 
'mismatched sections' 
'non standard sections' 
'packed' 
 

SFS-Forward 0.923 

0.933 0.925 

'?terminate@@YAXXZ' 
'LoadLibraryA' 
'RegGetValueW' 
'ntdll.dll' 
'packed' 
 

SFS-Backward 0.919 

0.949 0.912 

'LoadLibraryA' 
'RegGetValueW' 
'RtlPcToFileHeader' 
'num sections' 
'non standard sections' 
 

NONE 0.957 0.969 0.955 N/A 

Logistic 
Regression 

Model-based 0.923 

0.939 0.921 

'FreeEnvironmentStringsW' 
'GetSystemTimeAsFileTime' 
'InitializeCriticalSection' 
'KDSTUB.dll' 
'LoadLibraryA' 
'RegGetValueW' 
'RtlPcToFileHeader' 
'VerifyVersionInfoW' 
'VirtualAlloc' 
'_CorExeMain' 
'_XcptFilter' 
'_initialize_narrow_environment' 



'api-ms-win-core-processthreads-l
1-1-0.dll' 
'api-ms-win-core-rtlsupport-l1-1-
0.dll' 
'api-ms-win-crt-string-l1-1-0.dll
' 
'ntdll.dll' 
'non standard sections' 
'packed' 
'VCRUNTIME140.dll' 
 

SFS-Forward 0.88 

0.919 0.872 

'FreeEnvironmentStringsW' 
'GetSystemTimeAsFileTime' 
'_XcptFilter' 
'api-ms-win-core-processthreads-l
1-1-0.dll' 
'ntdll.dll' 
 

SFS-Backward 0.933 

0.941 0.934 

'GetSystemTimeAsFileTime' 
'RtlPcToFileHeader' 
'api-ms-win-core-processthreads-l
1-1-0.dll' 
'non standard sections' 
'VCRUNTIME140.dll' 

NONE 0.895 0.911 0.895 N/A 

 

Discussion & Analysis 

Hybrid vs Normalized Hybrid 

 

Figure 60: Hybrid vs Normalized Hybrid performance 

Despite the supposed distinct PCA values, the normalized dataset resulted in the models 

underperforming compared to the non-normalized dataset models. This can be seen across all the 

metrics. We see a trend of increasing scores as we move from DecisionTree to Logistic Regression. This 

implies that the strictness and compactness of the scaling (0 to 2) for dataset values that could go up the 

hundreds actually makes those features lose value, as they blend too well with the rest of the scaled 

features on the integer, if not, first decimal level. As usual, SVC was the highest performing model among 

the ones trained on the normalized data.  

This suggests that hybrid modeling with raw data is the better approach, but also that while the variance 

between the values (binary vs continuous) remain large, the hybrid approach’s abundance of each 

pattern allows for both to retain their significance. That is, there is enough (10000+) features of the 

binary data to withstand the 100+ dynamic features and vice versa for both features to hold. Likewise, 

given the current hybrid approach, the data no longer being binary makes it tougher for the tree 



algorithms than it is for point-based algorthms such as SVC and LogisticRegression – hence their clear 

outperformance here. 

Static vs Dynamic 

 

Figure 61: Static vs Dynamic performance  

Next we move on to comparing static-only and dynamic-only modeling. Note that the equal dataset sizes 

are smaller than in 7.3HD for the comparison to be fair. We see that the static approach is superior on all 

three metrics for all four classifiers. This is to be expected, given the 10000+;100+ ratio of the features; 

there is simply a more static features.  

Dynamic vs Hybrid 

 

Figure 62: Dynamic vs Hybrid performance 

Similarly, the hybrid approach will obviously be better than the dynamic approach, shown by its superior 

on all three metrics. The hybrid approach contains the dynamic approach alongside more training data 

(static features) so it is to be expected that it will outperform. One key thing to note is the “curve” with 

each metric for the dynamic approach – increasing as we move from left to right, only to dip with logistic 

regression. This is in contrast with the right-ward rising slope of the hybrid metrics, which is what we’ve 

seen earlier as well. This is due to the vast variance of the dynamic dataset, unscaled too, thus the logistic 

classification model would have trouble grouping features in its curves. 



Hybrid vs Static 

 

Figure 63: Hybrid vs Static performance  

This is where things get interesting. The results above show little if not slight discrepancies between the 

performance of the hybrid and static approaches. Given that SVC is our highest performing model, we 

note that the hybrid slightly outperforms the static approach in all three metrics. This indicates that the 

100+ dynamic data made a difference in the end. Consequentially, this would also prevent the hybrid 

method from overfitting given the non-uniformity though controlled nature of the training data. Now, 

while the graphs indicate only a slight nudge towards the hybrid approach, next we will consider how 

they affected feature selection. 

 

 

Feature Selection – Hybrid vs Static 

 

Figure 64: feature-selected Hybrid vs Static performance on accuracy 



 

Figure 65: feature-selected Hybrid vs Static performance on precision-recall 

 

Figure 66: feature-selected Hybrid vs Static performance on ROC AUC 

Given the significantly small differences between the hybrid and static models, we thus examine and only 

examine their relationships here; the other approaches have lower performance scores and are thus not 

considered, but their relative feature selection metrics have been presented above. While they generally 

underperform compared to no feature selection at all, we see in the above that generally for all three 

metrics, the hybrid model (for all classifiers) after undergoing feature selection performs much better 

than when the static model undergoes feature selection.  

This is due to the significance of the dynamic features at play in the hybrid module. In fact, it can be 

argued that certain static-dynamic pairings are dominant; to demonstrate, if a static feature is common 

among malicious samples, and a given sample calls its corresponding API immediately at runtime, then it 

is grounds for suspicion (such as registry key modification). 

Likewise, the significant reduction in feature size to just the important ones indicates a faster 

performance overall, with little overhead in reduction of accuracy. Thus, the hybrid approach 

outperforms the static approach in this regard entirely.  

Notice how the highest performing model on three metrics was the SVC using model-based feature 

selection. Note that DT = DecisionTree, RF = RandomForest, SVC = SupportVectorMachine, LR = Logistic 

Regression, MB = Model-based, SFS-F = Sequential Feature Selection (forward), and SFS-B = Sequential 

Feature Selection (backward). 



Static vs Dynamic vs Hybrid 

 

This best sums up the task. While the hybrid and static models have only slight descendances, it is shown 

that dynamic features alone are far too scarce compared to the other two. Similarly, the hybrid model, 

making use of the best of both worlds, outperforms the rest, even if by only a little, generally in all three 

metrics; particular via SVC, our highest performing model. This difference, no matter how minute, is 

paramount to stopping or detecting at least one more malicious program out there from executing. Thus, 

we have presented statistical evidence and logical justification for why the hybrid model is the best 

approach. 

Conclusion 
In this task, we extracted dynamic features from the set of benign and malicious executables used in Task 

7.3HD. I then combined them with the corresponding static features, and trained the same four 

classifiers: Decision Tree, Random Forest, SVC, and Logistic Regression. We presented various results 

exploring different forms of approaches; namely the pure hybrid approach, normalization, the pure 

dynamic approach, and the pure static approach (i.e., task 7.3HD). With respect to the hybrid data, the 

SVC performed the best in all three metrics. Despite the little difference between the hybrid and static 

models, we have also explored how both approaches affected feature selection, in which the hybrid 

approach was the clear winner.  

 

Links 
OneDrive: https://deakin365-

my.sharepoint.com/:f:/g/personal/s223058093_deakin_edu_au/EqUeQbbxoj9OnwiB3Wk_PYgBsaA1rLuK

szKDlJFoOxWkpQ?e=Q7iXol  
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Appendix 

 

Figure 67 

This function was adapted from [2]. Essentially it first separates the dataset by the binary labels, then 

applies PCA on both dataframes to two new scaled ones. These are then scatterplotted to showcase how 

closely packed malicious and benign (labeled) records are when reduced to 2 dimensions. 


