SIT324 Task 9.3HD+
T1 2025 | Visal Dam, s223058093

Contents
oo U ot o T OSSP OPRRORROPI
SUDTask 1: DAtaSet CrEationeoiiiiiiiie ittt ettt
(el a=iY Lo YA\ I Y 1Y T o] o 0 =T) PRSP PPPRPPPPPPR
Runtime AP FUNCTION EXEFACTION c.uuiiiiiiiiceeei et
Subtask 2: Hybrid Feature Matrix Creationcoiiiiii e
SUbtask 3: MaChing LEAINING.......oooiieie oo 15
HYDEIA FEATUIES ...ttt e et eae e e 15
Hybrid Features (Normalization of Continuous FEAtUres)coovuviiiiiiiii e 34
DYNAMIC ONY 1ottt ettt e e et e e et e e e et e e e ettt e e e e e e et b e e et e e e e aaraeas 41
SEATIC ONIY ettt ettt e e et e e et a e e e s tbaaa e 44
DiISCUSSION & ANGIYSIS ...vveieiieiie e ettt 47
(6o aTol VT3 o] o ISP 51
LIRS ettt ettt e e e e e e e b — e e e et bt e e e e h b e e e e b b e e e e b b e e e et b b e e e e ntb b e e e s atareeeeares 51
R BT EINCES. . ettt 51
FAY o o 1=Ta Lo [OSSP PORRRTI 52
Introduction

In this task, | implemented a script to extract runtime features from executables using APIMiner. These
features were then added static features used in Task 7.3HD, and used to train the same models as used
in 7.3HD. This report presents my steps and findings, as well as an in-depth comparison with the general
performance of the models here compared to in Task 7.3HD. In Section 1, | detail and explain my
approach in collecting dynamic run-time features into raw log data. In Section 2, | describe how |
processed this collected raw data into a workable dataset, as well as synchronizing it with previous work.
In Section 3, | mostly present the raw results from the ML models; with the exception of the subsection
“Hybrid Features”, | detail my data processing steps to approach this task from three other vectors:
normalization, use of only dynamic features, and use of only static features (7.3HD). Then, in the
subsection “Discussion & Analysis”, | present a comparison among the related techniques, providing
statistical evidence behind my reasoning.

Subtask 1: Dataset Creation

Honeypot VM Environment

Sophisticated malware has the ability to detect virtualized and sandboxed environments. Hence my first
step is to make the Flare VM seem like a normal machine than a VM. To achieve this, | just downloaded
random applications, as well as created and populated random directories with sample documents. | also
wanted to customize the wallpaper, but the option is disabled. | also increased the number of processors
to 4 and memory to 8GB in case there are malware that take them into account.

FLARE VM

L Type here to search

Figure 1

E’:} riare £ - D

E General System

System Motherboard ~ Processor Acceleration

D Display Processors: ' 45

@ Storage 1CPU 8 CPUs
Execution Cap: ' 100% +

(‘DJ Audio =

1% 100%

@ Network Extended Features: [_| Enable PAE/NX

@ Serial Ports Enable Mested VT-x/AMD-V

@ Use

Figure 2

e een e i g g

€3 flare - Settings = O X

E General System
E System Matherboard Processor Acceleration

@ Display Base Memory: ' 8192ME ~

Storage 4MB 16384 MB
-~ Boot Order: | M B nard mick

Figure 3

Runtime API Function Extraction

import subprocess
import os

import pandas as pd
import time

import shutil
import psutil
import re

import threading

x64 = [r"C:\APIMiner&4.exe", r"C:\apiminer-monitor-x64.d11"]
%32 = [r"C:\APIMiner.exe", r"C:\apiminer-monitor-x86.d11"]

P
def api_miner(file, t):
try:
process = subprocess.run(f"{x64[@]} --app {file} --dll1 {x64[1]}", capture_output=True, text=True).stdout.strip()
except:
try:
process = subprocess.run(f"{x32[@]} --app {file} --dll {x32[1]}", capture_output=True, text=True).stdout.strip()
except Exception as e:
print(e)
Figure 4

def logger_logic(trace_dir):
for dir_path, dir_names, files in os.walk(trace_dir):
for this_file in files:
file = os.path.join(dir_path, this_file)
filename = os.path.basename(file)
print(f"[:0] Found file {filenams}")
if filename.endswith(".nckh™):
match = re.search(r"pid_(\d+).nckh", filename)
if match:
pid = int({match.group(1))
print(f"[:D] Found pid: [{pid}]...killing it...™)
try:
parent = psutil.Process(pid)
children = parent.children(recursive=True)
for ¢ in children:
c.terminate()
parent.terminate()
os.rename(file, file.replace(".nckh™, "")+".txt")
print{"[«<:D] Processed killed!™)
except Exception as e:
print{f"[!] -» {e}...™)

Figure 5

trace_dir = r"C:\Users\flare\Downloads\malimal-logs"

for dir_path, dir_names, files in os.walk(r"C:\Users\flare‘\Downloads\mal\mal-pre™):
count = @
length = @
for this_file in files:
file = os.path.join(dir_path, this_file)
filename = os.path.basename(file)
if filename in mal files:
length += 1
try:
print(f"= Count[{count}] | File[{filename}] ==
threading.Thread(target=api_miner, args=(file, t), daemon=True).start()
#time.sleep(0.1)
count += 1
if count == 108 or length == len(ben_files):
print (f"*****END PROGRESS [{length}/{len(ben_files)}]****=")
time.sleep(6@)
logger_logic(trace_dir)
print ("***KILLING ALL PROCESSES®**™)
count = @

except Exception as e:
print(f"skipping {filename} due to: {e}")

Count[38]
Count[39]
Count[98]
Count[91]
Count[92]
Count[93]
Count[94]
Count[95]
Count[96]

File[1b67441f@a0adf23da22736c5575313d3bb459c915a1b534d3253b8e9599d 2708, exe]
File[1b3342c0048e13b323224c48caa%aec295213a93ed732c357160916475916675 . exe]
File[1c2fbad6cc7ed47dceb2a267@T6fcfbec30a24de53bobb3715698202afdbe3b97 . exe]
File[1c389be2afefebcdba3f3df8ar649127b898987ddac6Tb6c69b257d6177421d9. exe]
File[1c344888c75ef573d259b23a96T8e1869094ebabl@fede37cbbadd@cdcddlEbe . exe]
File[1c632fbbaBd37b57f28691e71210a834dd1b55380a13649a64e47be55bb3308a0. exe]
File[1lc7c@7802at60cddfbe62ce@37135297417517F2751729bd@2ce65d50T4e715d. exe]
File[1d883467cbafbd7d2b21fcdafafoch@cl6718d0a227052313F4682a83bd715e2. exe]
File[1d2bB8e3bbfcd7546b402c2f379%e4ad850fd4eceat?28ca5fdbfcha@b8s9ea7fh. exe]
Count[97] File[1d2d450742e4eddThB486Fd723892828dd97bbfe3fae23b8975725bdc18ce766. exe]
Count[98] File[1d728ca43h5442@dc297a0c4@a4541017feh6hdc10765197867818d1818d21bf .exe]
Count[99] | File[1d9284fd7818d17f4a54d@7h6497735ed852219925b348a3Fa5ha%6a976a5927 .exe]
#=#=*END PROGRESS [1@@/932]*%#+

[:D] Found file apiminer_traces.57@2625.pid_8@8.nckh

[:D] Found pid: [3@8]...killing it...

[!] -* process PID not found (pid=8@8)...

[:D] Found file apiminer_traces.57@4312.pid_8732.nckh

[:D] Found pid: [8732]...killing it...

Figure 6

The method of extracting API functions called at run time is relatively straightforward. There are three
main parts: using APIMiner to hook monitoring into an executable’s process flow; terminating the process
and child processes after a set timeout to prevent APIMiner from stalling; and applying this to every single
file in a scalable and reliable way. Each of these is discussed in more detail below.

The main player is our api_miner() function. This function uses the subprocess library to call upon
APIMiner and sets a target executable, which is passed to it as a parameter when it is called. We assume
by default that the target is 64-bit executable, and we use the corresponding APIMiner version
accordingly. In the case that the executable is 32bit, an error will occur. Hence the exception block then
tries to use the 32-bit version.

The APIMiner version used here is from [1], as it supports 64-bit executables, unlike the version used in
class. It is configured via the apiminer_config.txt file to output logs at
“C:\Users\flare\Documents\<ben/mal>\<ben-/mal->log”, where ‘ben’ and ‘mal’ represent benign and
malicious executables respectively.

v Ldlipynb - Jupyierd ab X + = fant

| The code execution cannot proceed because java_launcher.dll
was nat found. Reinstalling the program may fix this problem.

OK

File[@46841ababbas 75 34C36bbBC 2496408023 C6aB9F938cApb30F1edC 7 Bdfdbbde . exa] ===

Mode: Command & Ln1,Col8 dlipynb

g 12:35 AM
£ Type here to search 4)y v 5/26/2025

Simple O3 ® Python3 lipykemel) | Busy

Figure 7

Now, not all executables are able to run on the machine. Whereas some executables cannot run due to
missing DLL files, others would run and stall (such as malware that requires user interaction); hence no
data is extracted. APIMiner will stall as the execution itself stalls. This creates another problem — over
2000+ samples are to be run, and if a large majority of them stall then the machine will crash. Hence, we
need a method to ensure that everything eventually gets run and terminates at least once.

This is the aim of the logger_logic() function. It takes as input a directory, which in this case is the
configured output directory above, and applies the following to every file found. This version of APIMiner
saves file with a “.nckh” extension. Likewise, generated log files always the form of
“apiminer_traces.<integer>.pid_<process id>.nckh” which we take advantage of to locate the process ID
(pid) of every executed program. Essentially, the function locates this pid, terminates the process and its
children, and then renames rhe file with a “.txt” extension to turn it into a text file.

Finally, now that we know how to treat each file, we need to scale this to every other executable. As we
are aiming to form a hybrid dataset, we must ensure a one-to-one mapping of the static and dynamic
features. However, not all executables area valid PEs, only at least 90% of all given executables could have
their static features properly extracted and turned into a dataframe.

7 static-lipynk % | A originalipynb x
B + X O [» m C » Code ~ B MNotebook [Python 3 (ipykernel) O =

S mEEET T o
Skipping fd244d54c913¥855743a8a324e5bef79a95c051285b3995882763d79eac81cel.ole due to: 'DOS Head -
er magic not found.'
Skipping fd847clac2582df7fc923blalc5a5ab3c@65151c@82c2a2ed29b36212F899d087 .. 0le due to: 'DOS Head
| er magic not found.'
Skipping fd84cc@lEF4e2b42108c221bafi5e@5F7bB5917104902563c25d@beeddB869080 . 0le due to: 'DO5 Head
er magic not found.'
Skipping fd9b83a3d771e3@8c@3ec4d7BafBE6F5C3346Cc30669c62508d51b558a48F68154.0le due to: 'DOS Head
l er magic not Ffound.'

Skipping fda®@2bec8l7e33o@eb5c4f7690@13FbI85dedd41lc73e728F0dbSd7ffIe76cc93b.ole due to: 'DOS Head
er magic not found.'
Skipping fdb&l831787b301ldal7del3bbeaS4179383F6F6F00c7e558b38ede8le7B8F20966.0le due to: 'DO5 Head
er magic not found.'
Skipping fdbB8379a5ec8e227936cb6bd9aBl@8206b6e4b312b+5a3a30936d2f8Acd@1F45.0le due to: 'DOS Head
er magic not found.'
Skipping fe@fb48578844el8541lebreS46ef2ceclcaldfes53ee7b@b7OLldF35ba287fa6lf.ole due to: 'DOS Head
er magic not found.'
Skipping felS@de®643baf3l6ad789b237F7bf6ba3l28d36628712dalbd32923a677ach@f.ole due to: 'DOS Head
er magic not found.'
Skipping felB8833e4231a2d1364599d1d1bFfBab973557@bb645921815F8b37b1b9a8@5cb.ole due to: 'DOS Head
er magic not found.'
Skipping fe6bdlaza23eB84eb27b@7eb57beldcc3e7560145e79e@577622e8ea5b5%92a%8d. o0le due to: 'DOS Head
er magic not found.'
Skipping fe889za7418d9d+4dba7 9891c441@288 b 7d9d25b 4d3.o0le due to: 'DOS Head
er magic not found.'
Skipping fea@72ba3f7917af3c87clabBeareedc@calad6dfBc5c71843771d198c@45e58.0le due to: 'DOS Head
er magic not found.'
Skipping feb9997@b22e3e809845a89F F23988d5a087481a4C7227Fd2142eef1l127cc4097.0le due to: 'DO5 Head
er magic not found.'
Skipping fed®463a22afe2d50267784a981d770e@28+7d0731lac26e3e62ea4106845fcdl.ole due to: 'DOS Head
er magic not found.'
Skipping ff3132312a5074a7ee52d610e68FfbceBee3aB7ab619b031d0a2c761b0a@d7f6F.0le due to: 'DOS Head

er magic not found.' .

Skipping ff4cc28a94+3dal3+949c0a284ad40954258b28ce2834cle@cd@3856ed8aad@s5.0le due to: 'DOS Head

er magic not found.' -
3 (ipykernel) | Idie Mode: Command & Ln 12, Col 40 static-lipynb 0 [

P o 9

Figure 8

Thus, for the current directory, the line “if filename in mal_files:” acts as a filter to only execute relevant
applications; that is, if the file name exists in the static dataset. Afterwards, we use threading to call
multiple instances of the api_miner() function at the same time. To keep things running smoothly, we run
this for 100 executables, and this is kept track of by the count variable. Next, after 100 executables have
been spawned and hooked into by APIMiner, we then wait for 60 seconds before calling the
logger_logic() function. This is our hard timeout, guaranteeing that every program runs for at least 60
seconds, as some malware use delay functions to evade detection.

After 60 seconds, logger_logic() goes to the target directory, and apply what was previously discussed on
every single file that ends with “.nchk ”; killing every active process (and descendants) and turning the
files into text files. Once completed, the next batch of 100 executables is run, and this repeats until the
entire directory of executable is covered. This provides with a directory of text log files.

* c Filter files by name

m/ -

-/ redemption / log_ben /

1 Name

]
]

apiminer_traces.5702625.pid_808.txt

apiminer_traces.5704312.pid_8732 txt

[apiminer_traces.5707375.pid_16924.txt

I A i R I B 1 I 1 I S I 1 I O 1P 1 1P P 1P I 1P P

apiminer_traces.5707562.pid_18080.txt
apiminer_traces.5708281.pid_15660.txt
apiminer_traces.5708562.pid_14916.4xt
apiminer_traces.5708578.pid_16536.4xt
apiminer_traces.5710296.pid_7812.4xt
apiminer_traces.571067 1.pid_16740.4xt
apiminer_traces.5710906.pid_14776.5xt
apiminer_traces.5712437.pid_5060.txt
apiminer_traces.5719140.pid_2736.4xt
apiminer_traces.5720359.pid_3456.txt
apiminer_traces.5720734.pid_5428.txt
apiminer_traces.5721515.pid_5448.txt
apiminer_traces.5721583.pid_5764.txt
apiminer_traces.57256156.pid_19838.txt
apiminer_traces.5726265.pid_197 16.4xt
apiminer_traces.5729328.pid_15736.4xt
apiminer_traces.5731578.pid_19944.txt
apiminer_traces.5732156.pid_11340.8xt
apiminer_traces.5732625.pid_20532.txt
apiminer_traces.5734093.pid_19696.txt
apiminer_traces.5734171.pid_18464.txt
apiminer_traces.5734281.pid_3100.txt
apiminer_traces.5793593.pid_21324.4xt

apiminer_traces.5794906.pid_14076.5xt

Figure 9

Last Modified
5 hours ago
5 hours ago
5 hours ago
5 hours ago
5 hours ago
5 hours ago
5 hours ago
5 hours ago
5 hours ago
5 hours ago
5 hours ago
5 hours ago
5 hours ago
5 hours ago
5 hours ago
5 hours ago
5 hours ago
5 hours ago
5 hours ago
5 hours ago
5 hours ago
5 hours ago
5 hours ago
5 hours ago
5 hours ago
5 hours ago

5 hours ago

[Untix
g -

File Size

5KB
145 KB
7.9 KB
2.9KB
1.7 KB
1.6 KB
1.5 KB
929 B
38 KB
1.7 KB
930 B
9 KB
6.1 KB
1.5 KB
B10B
929 B
38 KB
3.9 KB
1.5 KB
20.7 KB
S KB
5KB
9.2 KB
931E
0.5 KB
876 B

4.4 KB

-

II[4@

The amount of processed programs, that is, from executable to static features to dynamic features,
decreases at every stage. Around ~90% of all downloaded executables had extractable static features,
and afterwards only around ~17-20% of these can be executed. Thus, from an initial set of 2100
executables, 1941 of them had static features extracted, and then 398 of these could be executed
successfully; thus, only around ~19% of the original set of malware made it to the final stage.

Subtask 2: Hybrid Feature Matrix Creation
Log Files to Dataset (Dynamic)

import pandas as pd
import re
import os

[48]: def get_file name(line):
return re.search("([a-fA-F8-9]{64}\.exe)", line).group(l)

def api_extractor(file):
with open(file, "r", encoding="utf-8", errors="replace™) as f:
lines = f.readlines()
row = {"sample™: get_file name(lines[@])}
for line im lines:
if "< notification_ >
parts = line.split(’ ', 1)
if len(parts) »= 2:
after_space = parts[1]

not in line:

try:
api_func = re.search(r'([*\{]+)\(", after_space).group(l)
if api_func in row:
row[api_func] += 1
else:
row.update({api_func: 1})
except:
None

return row

def dynamic_dataset_maker(target_dir):
rows = []
for dir_path, dir_names, files in os.walk(target_dir):
for this_file in files:
file = os.path.join(dir_path, this file)
name = os.path.basename(file)
if "apiminer_traces” in name:
rows.append(apl_extractor(file))

dynamic_dataset = pd.DataFrame(rows).fillna(@)
return dynamic_dataset

Figure 10

The dynamic_dataset_maker() function is what we use to parse the raw log files into datasets, and takes
as input the directory of log files from before (to process every single one). This function calls the
api_extractor() function, which is the main logical component and extraction process. It is given a file,
which is the full path to that file.

/- /redemption / log_mal / \‘

B nName - Last Modified File Size
[apiminer_traces 5311328 pid_8416.txt 6 hours ago oren &
6 hours ago 9798
8 hours ago 12xe e]12288, [protecti
6 hours ago 148 0:0000000000000000> LdrLo,
6 hours ago 9798

6 hours aga 9798

6 hours ag: 1
ours age 2x8 [module_name]”api-m

6 hours ago

G ([flags]s, [m [module_name]"api-m: s-win-core-fibers-11-1-

([flags]e, [module_sddress]|@x@ee07FFErOFDBORD, [ax

(Iflags]e, [module_address|@xeeeerFFAFOFDB0R0, [module_name]”api-m:

([flags]e, [module_address]|@x86ee7FFEFOFOBORS, [moduls_name]”api-m

are-localization-11-2-17, [basena

\ddre 55 @xP0007FFF F 240000,
handle |@xFFFFFFFFFFFFFFFF,

name]"kernel3z”, [basename]k

1327, [stack_pivoted]
=4 .

O apiminer.traces. & hours ago e

D) apiminer traces 783200t & hours ago 5798 x80007F FAFDFD2008, (1
Oy apiminer.t & hours ago 12%8 300677 FaFDFDG08, [1
00007F FEFOFDRORR, [1
D) apiminer_traces & hours ago 11%8 L fmodule add FFFF240080. [Library]®KERNEL3Z

Figure 11

Firstly, it needs to get the file’s name (so that we know which sample it corresponds to in the static
dataset). Luckily this is in the first line of every output file in the form of the full path. Hence, we use regex
to extract the first 64 alphanumeric hex characters just before and including the ‘.exe’ extension, which is
the SHA256 hash of the executable.

INPUT OUTPUT
<__notification__>-<0,0x0000000000000000> 00b65f272f9cc1d013a0e3cd24024299ef3eee6c87d35e0de9996¢ca
__process__([time_low]-971731694, [time_high]31182390, [pid]9416, 97f1cf037.exe
[ppid]3220, [module_path]"C:\Users\flare\Downloads\mal\mal-
pre\00b65f272f9cc1d013a0e3cd24024299ef3eee6c87d35e0de9996¢ca
97f1cf037.exe", [command_line]""C:\Users\flare\Downloads\mal\mal-
pre\00b65f272f9cc1d013a0e3cd24024299ef3eee6c87d35e0de9996ca
97f1cf037.exe" ", [is_64bit]1, [track]1)

It is observed that lines in the log file that does not contain called API fcntions are ones with
“<__notification__>", hence the function then looks for those lines. It then splits the line into two parts
after the first space; the second (indexed [1]) part is when the API function shows up.

INPUT OUTPUT
<__notification__>-<0,0x0000000000000000> NULL
__action__([action]"gatherer")
<process>-<0,0x0000000000000000> <process>- NtAllocateVirtualMemory([process_handle]OxFFFFFFFF
NtAllocateVirtualMemory([process_handle]OxFFFFFFFF <0,0x00000000000000 | FFFFFFFF, [base_address]0x0000000001950000,
FFFFFFFF, [base_address]0x0000000001950000, 00> [region_size]0x0000000000027000,
[region_size]0x0000000000027000, [allocation_type]12288, [protection]64,
[allocation_type]12288, [protection]64, [stack_pivoted]O, [stack_dep_bypass]O,
[stack_pivoted]O, [stack_dep_bypass]O, [heap_dep_bypass]0, [process_identifier]9416)
[heap_dep_bypass]O, [process_identifier]9416)

In this line we still need to use regex to extract the actual API function. Hence, we extract from the
second part the first characters just the before the first “(”.

INPUT OUTPUT
NtAllocateVirtualMemory([process_handle]OXFFFFFFFFFFFFFFFF, | NtAllocateVirtualMemory
[base_address]0x0000000001950000,
[region_size]0x0000000000027000, [allocation_type]12288,
[protection]64, [stack_pivoted]O, [stack_dep_bypass]0,
[heap_dep_bypass]O, [process_identifier]9416)

Thus, we have now extracted one API function called at runtime. Now, for the dynamic dataset, simply
knowing that an API function is called is not significant enough to indicate malicious behavior. Hence,
counting adds more importance to the dynamic features. Within the same api_extractor() function,
before we did any extracting, we actually created a dictionary object, with the key-value pair “sample”:
filename. This represents our “sample” column, which allows us to know the corresponding samples in
the static dataset. For every extracted API function, we check whether or not it exists as a key in our
dictionary; if it is, then the value for that key is incremented by 1; if not, then it is added to the dictionary
as a key, with the value set to 1.

NtAllocateVirtualMemory in dict{}?
Yes | dict{ No | dict{
“NtAllocateVirtualMemory” : n + 1, “NtAllocateVirtualMemory”: 1
} }

This is repeated for every single line, and thus every single API function for the current file. Thus, a record
is kept every time an API function call is encountered, Once compete, the api_extractor() function returns
the same dictionary object, now populated with 1-D column values:

sample NtAllocateVirtualMemory | NtProtectVirtualMemory RegOpenKeyExW
00b...037.exe 12 3 2

This represents what a row would look like in our final dataset. The returned dictionary object above is
appended to an arrow, thus creating an list of rows. After every file has been processed, we turn this into
a dataframe, making sure to fill empty spaces with O, as pandas aligns every column properly and stacks
every row.

sample NtAllocateVirtualMemory | NtDeviceloControlFile RegQueryValueExW
00b...037.exe 12 0 3
00c...112.exe 2 23 0

ff9...a2d.exe 78 123 111

Malware: Dynamic Dataset

mal dyn df = dynamic_dataset maker(r"C:\Users\lenovo\Documents\Deakin Units S334\SIT 324 Malware Analysis\9.3HD+\redemption-20250526T1416@9Z-1-801\redemption\log mal

[57]: | mal_s

dyn_df.info()

[cI

<class ‘pandas.core.frame.DataFrame’ >

RangeIndex: 211 entries, @ to 218
Data columns (total 71 columns):

Figure 12

Column

sample
NtAllocateVirtualMemory
LdrLoadDll
NtOpenSection
NtMapviewdfSection
NtProtectVirtualMemory
NtCreateMutant

NtClose
NtFreeVirtualtemory
LdrUnloadDll
RegOpenKeyExk
RegQueryInfoKeyl
RegEnumKeyExk
RegEnumValuek
RegCloseKey
GetFileType
NtQueryInformationFile
NtCreateFile
NtDeviceloControlFile
GetFileAttributesh
RecOueruWalusFuld

mal_dyn df

-

343
344
345
346

347

Mon-Null Count Dtype

211 non-null object

211 non-null floate4
211 non-null floate4
211 non-null floated
211 non-null floated
211 non-null floated
211 non-null floates
211 non-null floates
211 non-null floates
211 non-null floates
211 non-null floates
211 non-null floates
211 non-null floatea
211 non-null floatsa
211 non-null floatesa
211 non-null floatha
211 non-null floatha
211 non-null floate4
211 non-null floate4
211 non-null floate4
211 non-null floathd

sample NtProtectVirtualMemory NtClose LdrGetDllHandle LdrLoadDIl

00488268e1535df061b0332932062458e8d92442 2dec4c..,

006d680fdd592bcabb6bad65c61a82c2c97¢1e30158459...

011¢10551a4fa592185fd99631ab98f194282638b3a4¢0...

014feb184c1838be5b8ca7761e5ddeath5af02492715f1...

0171b83f2a99eb2b3c2e06077c692cba3c17fd69753567...

fb4256038010fac2182f060deffaa1ffe0ces6f55ad4ed. .

fcGada 187bd350e3667 115f585735cda2cc9241d1e5c9d...

fd828c534b0etce946192311ddofadadoses2fecaferf.,

ffoceb03¢1063e6ebc7c6b7deds1c266b8 1d6304749296...

ff6b8529327f09bf46bec] 6e6535b82f27a804f4877740..,

348 rows = 72 columns

20

20

Figure 13

2.0

61.0

0.0

00

0.0

0.0

0.0

00

0.0

1.0

1.0

0.0

0.0

1.0

0.0

0.0

0.0

0.0

0.0

40

6.0

0.0

0.0

FindFirstFileExXW NtCreateFile GetFileType SetFilePointerEx

0.0

1.0

0.0

0.0

0.0

2.0

0.0

0.0

0.0

0.0

0.0

64.0

00

0.0

00

a0

0.0

00

0.0

0.0

0.0

430

0.0

0.0

0.0

8.0

0.0

0.0

0.0

0.0

0.0

28.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

Combining with Static Dataset (Hybrid)
Hybrid Malware
mal_df - pd.read_csv("complete static malware.csv")
dyn_mal_names = [d for d in mal_dyn df]
reduced_static_mal = mal_df[mal_df['sample’].isin(mal_dyn_df['sample’])].reset_index().drop(columns=["index"])

reduced_static_mal

n n n n n n

SAMPle 14 ne info@@UAEGXZ Ttype info@@UEAA@XZ 2@YAPAXI@Z 2@VAPEAX K@Z 3@YAXPAX@Z 3@VAXPEAX@Z char trait
0 (0488268e15a5df061b033a932062458e8c924422decdc.., 0.0 0.0 0.0 0.0 0.0 0.0
1 006d680fdd592bcabb6bad65c61a82c2¢97c1e30f58459... 0.0 0.0 0.0 0.0 0.0 0.0
2 011c1055134fa592185fd99631ab95f194282638b3a4dc0... 0.0 0.0 0.0 0.0 0.0 0.0
3 014feb184c1838be5b8ca7761e5ddeafb5af92492718f1... 0.0 0.0 0.0 0.0 0.0 0.0
4 0171b83f83%99eb2b3c2e06077c6%2cba3dc17fd69753567.. 0.0 0.0 0.0 0.0 0.0 0.0
343 fb4256038010fac2162f060deffaalffe0ces6f55ad4ed.., 0.0 0.0 0.0 0.0 0.0 0.0
344 fc6adal87bd350e36671f5f585735cda2cc9241d1e5¢9d.. 0.0 0.0 0.0 0.0 0.0 0.0
345 fd828c534b0e6ced46192311ddafadad9ses2feccaifelf., 0.0 0.0 0.0 0.0 0.0 0.0
346 ffOceb03c1063e6ebcTc6bTded81c266b31d6304749296.., 0.0 0.0 0.0 0.0 0.0 0.0
347 ff6b8599327f09bf46bec 6e6535b82f273804f4877799.., 0.0 0.0 0.0 0.0 0.0 0.0

348 rows = 5281 columns

4 >

Figure 14

From the above discussion, we know have a dataset of dynamic features. Now, we must ensure a one-to-
one mapping with our static dataset. First, we import the static dataset. Then, we choose only the rows
whose sample value (i.e., file name) exists in our dynamic dataset:

Static Dynamic Hybrid

sample lib.dll sample LdrLoadDIl sample lib.dll | LdrLoadDlIl

000..432.exe

bbc...11a.exe

ddc...3ae.exe

Thus, the static dataset is reduced to be the same size (row-wise) as the dynamic dataset. Order is also
preserved; hence we can simply combine the two tables column-wise.

hybrid_mal = pd.concat([reduced_static_mal, mal_dyn_df], axis=1)

apply Label

hybrid mal['label’] = 1

hybrid_mal

343
344
345
346
347

sample

00438268e1525df061b0332932062458e8d92442 2decdc..,
006d630fdd592bcabbbad65c61a82c2c97c 1e30f58459...
011c10551a34fa592185fd296313b96f194282638b3a4dc0...
014feb184¢1838beSh8ca7761e5ddeafb5afo2492718f1..,

0171b3318a%9eb2b3c2e06077c692cba3c17fd69753567...

fo4256038010fac2182f060deffaalffelces6f55ad4ed..,
fc6a4a187bd350e36671f5f585735cda2cc9241d1e5c9d...
dB828c534b0e6ce94619231 1ddofadadosea2feco1fe1f.,
fi0ceb03c1063e6ebc7c6b7ded81c266b81d6304749296...

ff6b8599327f09bf46bec1626535b82f27a804f4877795...

348 rows x 5354 columns

EE]

hybrid_mal.to_csv("hybrid_malware.csv™)

Figure 15

7

1type_info@ @UAE@XZ

00

0.0

0.0

0.0

0.0

00

0.0

00

0.0

0.0

7
1type_info@ @UEAA@XZ

0.0
0.0
0.0
0.0

0.0

0.0
0.0
0.0
0.0

0.0

7

2@YAPAXI@Z
0.0
0.0
0.0
0.0

0.0

0.0
0.0
0.0
0.0

0.0

77

”

7

2@YAPEAX K@Z 3@YAXPAX@Z 3@YAXPEAX@Z

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

char_trait:

Finally, we concatenate the two data frames into one hybrid dataset. Shown above is the hybrid dataset
for the malware, and the process till now is the exact same and repeated for the benign executables.

343 fb4256038010fac2182f060deffaa1ffe0cetbf55ad4ded.. 0.0 0.0 0.0 0.0

344 fc6a4a187bd350e3667115f585735cda2cc8241d1e5¢9d.. 0.0 0.0 0.0 0.0
345 fd828c534b0eficed46192311dd9fadad9Bes2fcco1fe1f., 0.0 0.0 0.0 0.0
346 ffl()ceb03c1063e6ebc7cbb7ded81c266b81d6304749296.., 0.0 0.0 0.0 0.0
347 ff6b8599327f00bf46bec 6e6535b82f27a804f4877799.., 0.0 0.0 0.0 0.0

348 rows = 5354 columns

hybrid_benign

70? 7707
SaMPIe §AutoDeleteVector@D@@QEAA@PEAD@Z SAutoDeleteVector@E@@QEAA@PEAE@Z SAutoDeleteVector@EQ

0 agentactivationruntimestarter.exe 0 0
1 aitstatic.exe 0 0
2 AppHostRegistrationVerifier.exe 0 0
3 appidcertstorecheck.exe 0 0
4 appidpolicyconverter.exe 0 0
476 wuapihostexe 0 o]
477 wuauclt.exe 0 0
478 WUDFHost.exe 0 0
479 wusa.exe 0 0
480 ¥blGameSaveTaskexe 0 0

481 rows = 9501 columns

reduced_hybrid_benign = hybrid_benign.sample(348, random_state=42)

Figure 16

As there are more benign executable, we under sample the dataset to get 348 random records.

q

hybrid_mal.info()

<class 'pandas.core.frame.DataFrame">
RangeIndex: 348 entries, @ to 347

Columns: 5380 entries, sample to label
dtypes: float64(4677), inte4(622), object(l)
memory usage: 14.1+ MB

hybrid_feature_matix = pd.concat([reduced hybrid_benign, hybrid_mal],

hybrid_feature_matix

sample

] control.exe
1 upnpcont.exe
2 ThumbnailExtractionHost.exe
3 provlaunch.exe
4 tsdiscon.exe

691 fb4256038010fac2182f060deffaalffeOcet6f55ad4ded..,
692 fc6a4a187bd350e36671f5f585735cda2ccd241d1e5¢9d...
693 fdB828c534b0edce946192311ddofadadosesz2fcco1fef.,
694 ff0ceb03c1063ebebc7c6b7ded81c266b81d6304749296...

695 ffoh8599327f00bf46bec6e6535b82f272804f4877799...

696 rows = 11936 columns

Figure 17

Finally, we combine everything row-wise and filling empty cells with Os. This is our final hybrid dataset,

707
$AutoDeleteVector@D@@QEAA@PEAD@Z

0.0
0.0
0.0
0.0

0.0

0.0
0.0
0.0
0.0

0.0

axis=@).fillna(@).reset_index(drop=True)

707
$AutoDeleteVector@E@@QEAA@PEAE@Z

0.0
0.0
0.0
0.0

0.0

0.0
0.0
0.0
0.0

0.0

707
$AutoDeleteVector@E@@QEAA@XZ

0.0
0.0
0.0
0.0

00

0.0
0.0
0.0
0.0

0.0

complete with static and dynamic features for both malicious and benign executables.

Subtask 3: Machine Learning
Hybrid Features

SAu

Using the dataset obtained above, four machine learning classification models were trained, tested, and
evaluated. In this section, we explore the dataset in its entirety, that is, without normalization. The
following screenshots are just to demonstrate the graphical outputs and raw metrics. A summary table is

provided in the Discussion subsection, where a more compressive evaluation is presented.

Decision Tree
Classifier #1: DecisionTreeClassifer

Hypertuning

dt_params = {
‘criterion’: [‘entropy’, ‘log_less®, ‘gini'],
‘min_samples_split': [2, 5],
‘min_samples_leaf': [1, 3],
‘max_features':['sqrt’, "log2']
'class_weight': [None, 'balanced’]

pre_dt = DecisionTreeClassifier(random state=42)
cdt = GridSearchcV(estimator=pre_dt, param_grid=dt_params, cv=5, return_train_score=True, scoring='accuracy')

start = time.time()
cdt.fit(X_train, y_train)
print(time.time() - start)

119.73218668563843
print(“Params used:", cdt.best_params_)
print("Best score (acc):", cdt.best_score_)

Params used: {'class_weight': “balanced’, “criterion': 'entropy’, ‘'max_features': 'sgqrt’', 'min_samples_leaf': 3, 'min_samples_split’: 2}
Best score (acc): 9.9650536503261099

Training

dt = cdt.best_estimator_
dt.fit(X_train, y_train)

v DecisionTreeClassifier

DacisionTreeClassifier(class_weight="balanced', criterion="entropy’
max_features="sgrt’', min_samples_leaf=3,
random_state=42)

Figure 18

Evaluation Metrics

dt_acc, dt_prec, dt_rec, dt_cm, dt_FPR, dt_TPR, dt_roc_auc, dt_precision, dt recall, dt_pr_auc = €

=== RAW Evaluation Metrics ==%%*
Accuracy Score: 9.9617224880352775
Precision Score: @.9680851863829787
Recall Score: 8.9479166666666666
Confusion Matrix:

[[11@ 3]

[5 9]
ROC AUC: 9.96063399705a1474
Precision-Recall: 8.9699526838128609

show_metrics(dt_cm, dt_FPR, dt TPR, dt_roc_auc, dt_precision, dt_recall, dt pr auc, dt_acc, “Evalu

Figure 19

Evaluation metrics for Decision Tree Classifer

Precision-Recall Curve ROC Curve
. . 1.0 4
Confusion Matrix 100
0.8 +
80

0 - Benign z
a
=

3 & 064
c] T
E © 60 g
= 1) >
1] > =3

& = 8 04
40 g
1 - Malware =

0.2 4

20
-=— ROC curve (AUC = 0.9606839970501474)
- 0 - Benign 1 - Malware s
—— Precision-Recall AUC: 0.9699626090128609 N 0.04 ¥ == Random Guess
Predicted label
0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 10
Recall False Positive Rate (FPR)

Figure 20

Feature Selection

Feature Selection

#X. columns

Model-based Selection DT

dt_selected features, dt_X train_selected, dt_X test_selected = model based_selection(cdt, dt, X, y, X train, X_test, y_train, y_test)

=== Chosen Features [Model-based selection using DecisionTreeClassifier{class_weight="balanced', criterion="entropy’,
max_features="sqrt’, min_samples_leaf=3,
random_state=42)] =

>> "EVP_sha512"
>> 'K32EnumProcessModules’
>> "LookupPrivilegeValueW'
»> 'TerminateProcess’
>> '_commode’
"o p_ argc'
»» '_o_ exit’
»» '_o_ wcsiemp®
»» '_wcsicmp'
»» 'api-ms-win-core-processthreads-11-1-1.d11"
#EEE% RAW Evaluation Metrics *#%+*
Accuracy Score: @.9617224888382775
Precision Score: .94
Recall Score: 8.9791666666666666
Confusion Matrix:
[[187 6]
[2 =24]]
ROC AUC: 0.9630346607669616
Precision-Recall: @.9643680223285486

Figure 21

Evaluation metrics DecisionTreeClassifier(class_weight="balanced', criterion="entropy’,
max_features='sqrt', min_samples_leaf=3,
random_state=42) w/ selected features (model-based)

Precision-Recall Curve ROC Curve
1.0 4 . 1.0 4 7
Confusion Matrix 100 s
0.9 ’
0.8 4
80 Vi
0-8 z .
enign = 7
& 4
1 E ’
0.8 = 7
- @ 0.6 /
H H 60 = K4
a ?"; © /
gor g = /'
$ 0.4+ #
40 [e
1 - Malware IS 4
0.6 e
0.2 4 d
20 P
057 -—— ROC curve (AUC = 0.9630346607669616)
P 0 - Benign 1 - Malware s
— Precision-Recall AUC: 0.9643680223285486 - 0.0 == Random Guess
Predicted label
T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.6 0.8 1.0
Recall tive Rate (FPR)
Figure 22

Sequential Selection DT

sfs(X, y, X train, X test, y train, y test, cdt, dt, dt_selected features)

=== Chosen Features [SF5-Forward using DecisionTreeClassifier(class_weight="balanced', criterion="entropy’,

max_features="sqrt', min_samples_leaf=3,
random_state=42)]

»» "K32EnumProcessModules’

»» "TerminateProcess’

»» '_commode’

"o exit’

»» 'api-ms-win-core-processthreads-11-1-1.d11"

#**E* QAN Evaluation Metrics *%%%%

Accuracy Score: B.9665071778334929

Precision Score: @.9494940494940495

Recall Score: ©.9791666666666666

Confusion Matrix:

[[188 5]

[2 94]]

ROC AUC: 9.9674594395280236

Precision-Recall: @.969115497@768233

=== Chosen Features [SFS-Backward using DecisionTreeClassifier(class_weight="balanced', criterion="entropy’,

max_features="sqrt", min_samples leaf=3,
random_state=42)]
»» 'LookupPrivilegeValueW'
»»> 'TerminateProcess'

>> '_commode’

»» '_o_ exit’

»» "api-ms-win-core-processthreads-11-1-1.d11°
#==E® RAN Evaluation Metrics =%%%%
Accuracy Score: 8.9665071770334929
Precision Score: @.9494940404540495
Recall Score: B.97901666666666666
Confusion Matrix:

[[188 5]

[2 2411

ROC AUC: ©.9674594395288236
Precision-Recall: @.969115457876@233

Figure 23

La

09

[oX:]

Pracisian

o7

[+X.]

05

La

[X:]

[oX:]

o7

Pracision

[+X.]

05

Figure

Evaluation metrics DecisionTreeClassifier(class_weight="balanced’, criterion="entropy’,

Precision-Recall Curve

max_features='sqrt', min_samples_leaf=3,

random_state=42) w/ selected features (sfs - forward)

ROC Curve
14 A >
‘_‘—___ Confusion Matrix 180 S
7
’/
a8
BQ I(
@ - Benign = 1)
E o
_ = 06 ~
[-
£ “ : -
@ - rd
£ £ ‘
5o P
a1 = i
1 - Makwars IE' ,(
’)
az #
20 L
= ROC curve (AUC = 0.9674534335280236)
Q- Benign 1 - Malware Lf
—— Pracision-Recall AUC: 0,9691154970760233 ur'nodirrr'l! iabal 0.0 - == FRandam Guess
og 2z e 06 X Lo oo o2 04 oG oa 1o
Tecall False Positive Aate (FPA)
Evaluation metrics DecisionTreeClassifier(class_weight="balanced’, criterion="entropy’,
max_features='sqrt', min_samples_leaf=3,
random_state=42) w/ selected features (sfs - backward)
Pracision-Recall Curve ROC Curve
14 A >
‘_‘—___ Confusion Matrix 180 S
S
//
a8
BQ I(
@ - Benign ra ,)
E o~
3 =06 Py
6a] ’
£ g .
Eaa P
a1 = i
1 - Makwars IE' ,(
’)
az E
20 L
= ROC curve (AUC = 0.9674534335280236)
- . Q- Benign 1- Malware Lf .
= Pracision-Recal| AUC: 0,.9691154970760233 Pradicked labal Q.0 - == Random Guess
og 2z e 06 X Lo oo o2 04 oG oa 1o
Tecall

24

False: Positive Rate (FPR)

Random Tree

Hypertuning
C209]: rf_params = |
'n_estimators’: [5, 18, 5e, 1@e],
‘min_samples_split’: [2, 5],
‘min_samples_leaf': [1, 3],
‘max_features':['sgrt’, "log2'],
‘class_weight': [MNone, "balanced’]

pre_rf = RandomForestClassifier(random_state=42)
crf = GridSearchCV{estimator=pre_rf, param_grid=rf_params, cv=5, return_train_score=True, scoring="acc
WX] »

[281]: start = time.time()
crf.fit(X_train, y_train)
print(time.time() - start)

189.4257936477661
[282]: print{"Params used:™, crf.best_params_)
print("Best score (acc):", crf.best_score_)

Params used: {'class_weight': None, 'max_features': 'sgrt’, 'min_samples_leaf’': 1, "min_samples_spli
t': 2, 'n_estimators': 188}
Best score (acc): 8.9836183513578377

Training

[383]: rf = crf.best_estimator_ B ™ v & F 8
rf.fit(¥_train, y_train)

- RandomForestClassifier

§RandomForestClassifier(randum_state=42)g

Figure 25

Evaluation Metrics

rf_acc, rf_prec, rf_rec, rf_cm, rf _FPR, rf TPR, rf_roc_auc, rf precis

5|

wExEE RAW Evaluation Metricg *¥#%*
Accuracy Score: 8.92886124491913338
Pracision Score: ©.9693877551028488
Recall Score: @.9805833333333334
Confusion Matrix:
[[118 3]

[1 95]]
ROC AUC: ©.9815173363834869%
Precision-Recall: 8.9818778887152%46

Figure 26
Evaluation metrics for Random Forest Classifier
Precision-Recall Curve ROC Curve
1.0 . 1.0 4 rd
\ Confusion Matrix 100 s
’
/
4
097 0.8 v
80 yd
0 - Benign 3 7’
& a
0.8 4 = s
- ’
_ @ 0.6 "
5 2 60 5 4
z A g //
£or] ¢ 5 s
8 044 #
a0 F e
1- Mal 4
0.6 4 alware = ,’
0.2 ,,’
20 -
057 -—— ROC curve (AUC = 0.9815173303834809)
P 0 - Benign 1 - Malware s
—— Precision-Recall AUC: 0.9818778887152946 - 004 ¥ == Random Guess
Predicted label
00 02 04 06 08 10 00 02 04 06 08 10

Recall False Positive Rate (FPR)

Figure 27

Feature Selection

Feature Selection

Model-based selection RF

rf_selected_features, rf_¥_train_selected, rf_X test_selected = model_ based_selection(crf, rf, X, y, X

r Y

EEEEEEEEEEEEEE—— >
=== Chosen Features [Model-based selection using RandomForestClassifier(random_state=42)] ===

»» " terminate@@yAXXZ"

»>» 'LdrLoadDll’

>» 'TerminateProcess’

»> ' _XcptFilter'

»> '__C_specific_handler’
»» ' _cexit’

»» 1 _exit’

»>> '_fmode’

»> ' _vsnwprintf’
»> 'api-ms-win-core-errorhandling-11-1-8.d11°’
*wwxx RAW Evaluation Metrics »a#xx
AcCuracy Score: @8.9768765558239234
Precision Score: @.9595959595950506
Recall Score: ©.9895833333333334
Confusion Matrix:

[[189 4]

[1 95]]
ROC AUC: @.97780925516224188
Precision-Recall: 8.9769819989622541

Figure 28
Evaluation metrics RandomForestClassifier(random_state=42) w/ selected features (model-based)
Precision-Recall Curve ROC Curve
1.0 . 1.0 4 rd
\ Confusion Matrix 100 "y
’I
rd
0.9 0.8 4 e
80 e
0 - Benign = ’
g ’
] = ’
0.8 = 7
— 8 064 ’
& g 60 k] e
8 b o J
2074 2 = ’
& = £ 044 e
40 ; e
- ’
0.6 1 - Malware = ,,
0.2 4 e
20 P4
,
0.5 N <= ROC curve (AUC = 0.9770925516224188)
N 0 - Benign 1 - Malware s
—— Precision-Recall AUC: 0.9769819909622541 N 0.04 ¥ == Random Guess
Predicted label
0o 02 04 06 08 10 00 02 04 06 08 10
Recall False Positive Rate (FPR)

Figure 29

Sequential Selection RF

sfs(X, y, X _train, X test, y train, y test, crf, rf, rf_selected features)

=== Chosen Features [SFS-Forward using RandomForestClassifier(random_state=42)] ===
>> "terminate@@yAxXZ’
>> "LdrLoadDll’
>> "TerminateProcess’
>» ' C_specific_handler’
>> "api-ms-win-core-errorhandling-11-1-8.d11"
*rEEE RAW Evaluation Metrics *****
Accuracy Score: @.971291866@287881
Precision Score: @.9591836734693877
Recall Score: 8.9791666666666666
Confusion Matrix:
[[182 4]
[2 94]]
ROC AUC: @.971834218289@354
Precision-Recall: 8.9739588508632425
=== Chosen Features [SFS-Backward using RandomForestClassifier(random_state=42)] ===
>> "LdrLoadDll’

>» " C_specific_handler’
>> " exit”
>> " _fmode’

>> "api-ms-win-core-errorhandling-11-1-8.d11"
#xExx RAW Evaluation Metrics ***==
Accuracy 5Score: @.9712918668287881
Precision Score: 8.9591836734693877
Recall Score: 8.9791666666666666
Confusion Matrix:
[[182 4]
[2 94]]
ROC AUC: ©.9718842182298354
Precision-Recall: B.973958855a8632425

Figure 30

k]

oA

UL

[

e

["E-]

La

09

X}

nr

IR

(L]

(151

Evaluation metrics RandomForestClassifier{random_state=42) w/ selected features (sfs - forward)

Precision-Recall Curve

= Pracision-Recall ALUC: 0.9738598590632425
o a2 o4 [ah] (LX) 10
Fecall
Pracision-Racall Curve

True lakel

Confusion Matrix

Q- Benign

1 - Makware

0 - Benign 1 - Malware
Pradictes labal

True Pasitive Rata [TPR)

ROC Curve
10
-
#
4
L
ra
0.5 -
’
ra
#
el
’
0.6 - -~
-
+
4
’
'l
0.4 #
rd
s
#
#
’I
.z P
4
-
P
= ROC curve (AUC = 0.9718642182690854)
0.0 - = Random Guess
o 02 [[:1.] [iE:] 1o

False Posilive Rale (FRRI

Evaluation metrics RandomForestClassifier(random_state=42) w/f selected features (sfs - backward)

‘_-_-_‘_‘_-_-_-_'_'_‘—‘—-—-—-_.

— Pracision Recall AUC: 0,973859350063242 5

oo 2 a4 0.e og 10
Pecall

Figure 31

True lac2l

Confusion Matrix

0 - Benign

1- Malwara

Q- Benign
Pradicten lakel

1 - Malware

True Pestive Rate (TPR)

RO Curve
10
. -
o+
#
*
rd
0.8 - -~
#
el
,f
{i
06 - P
4
s
4
s
&
04 - rd
4
4
ra
£
#
0z s
’
)I
o ROEC £urve (AUC = 0.9716642182630854)
an- ¥ == Random Gueoss
oo 02 0.4 (L] oa Lo

False Positive Rate (FRR)

SvC
Hypertuning

svC_params= |
‘kernel’ :["linear", 'sigmoid®],
‘c': [1, 5, 20, 1ee],
‘class_weight': [None, 'balanced’],

pre_svc = SVC(probability=False, random_state=42)
csvc = GridSearchCV(estimator=pre_svc, param_grid=svc_params, cv=5, return_train_score=True, scoring='

X ———————— >

start = time.time()
csve.fit(X_train, y_train)
print(time.time() - start)

Fitting 5 folds for each of 16 candidates, teotalling 88 fits
32.887708088087158

print("Params used:”, csvc.best params_)
print("Best score (recall):", csvc.best_score_)

Params used: {'C': 1, 'class_weight': None, 'kernel': "linear’}
Best score (recall): 8.9897538396802019

Training

svc = csve.best_estimator_
svc.fit(X_train, y_train)

y svC

ESVC(C=1, kernel="linear’, Pandom_state=42)§

Figure 32

Evalutation Metrics

svC_acc, svc_prec, svc_rec, svc_cm, svc_FPR, svc _TPR, svc_roc_auc, sve_preci:
L

wEEEE BAW Evaluation Metricsg *¥#®%=
Accuracy Score: 6.9984386220095693
Precision Score: 8.9795918367346939
Recall Score: 1.8
Confusion Matrix:

[[111 2]

[& 96]]
ROC AUC: 8.991156844247787601
Precision-Recall: ©.9897959183673469

Figure 33

Evaluation metrics for Support Vector Machine

Precision-Recall Curve ROC Curve
1.0 4 . . 1.0 4 ra
Confusion Matrix 100 e
s
’
0.9 e
- 0.8 4 P
! 80 e
0 - Benign = ’
& ’
1 E /
0.8 = s
- 3 0.6 /
c T /
K=l 2 60 -4 ’
2 3 2 e
2074 2 B e
2 0.4 4 ’
40 g e
1 - Malware ’
0.6 - e
1 ’
0.2 L
20 L
0.5 <= ROC curve (AUC = 0.9911504424778761)
- 0 - Benign 1 - Malware s
—— Precision-Recall AUC: 0.9897959183673469 N 0.04 ¥ == Random Guess
Predicted label o
0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 1.0
Recall False Positive Rate (FPR)
Figure 34

Feature Selection

Feature Selection

Model-based selection SVC

sve_selected_features, svc_X_train_selected, svc_X_test_selected = model_based_selection(cswvec, svc, X,

F

=== Chosen Features [Model-based selection using SVC(C=1, kernel="linear', random_state=42)] ===
> "?terminate@@yYAXXZ’
»» 'DeleteCriticalSection’
»» "ExitProcess’
»>» "KDSTUB.d1l'
»» "KERNEL32.d11"
»» "KdInitializelibrary’
»» "LdrLoadDll’
»» "LoadLibraryA’
»» "RtlPcToFileHeader'
»>> "VirtualQuery'
»> '_CorExeMain’
»> '_XcptFilter'
»» "mscoree.dll’
»» "num sections”®
»» "mismatched sections’
»» "non standard sections’
»>> "packed’
»>> 'NtProtectVirtualMemory”®
#xwx® RAW Evaluation Metrics ##%=*
Accuracy Score: 8.9856459338143541
Precision Score: ©.9894736842185263
Recall Score: @.9791666666666666
Confusion Matrix:
[[112 1]
[2 94]1]
ROC AUC: @.9851585545722713
Precision-Recall: ©.92901848644338117

W

Figure 35

Evaluation metrics SVC(C=1, kernel='linear', random_state=42) w/ selected features (model-based)

Precision-Recall Curve ROC Curve
1.0 4 . . 1.0 4 >
Confusion Matrix ’
100 /
s
’
0.9 s
- 0.8 4)
0 - Benign 80 = /’
& ’
1 E /
0.8 = s
- o 0.6 4 Vs
c g T ’
g 60 4 ,
2 3 2 e
2074 2 B e
2 0.4 4 ’,
40] ’
1 - Malware = ’
0.6 - e
1 ’
0.2 ’
20 P
,
0.5 <= ROC curve (AUC = 0.9851585545722713)
- 0 - Benign 1 - Malware s
—— Precision-Recall AUC: 0.9891048644338117 N 0.04 ¥ == Random Guess
Predicted label
0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 1.0
Recall False Positive Rate (FPR)
Figure 36

Sequential Selection SVC

sfs(X, y, X_train, X test, y_train, y_test, csvc, svc, svc_selected features)

=== Chosen Features [SF5-Forward using SVC(C=1, kernel="linear', random_state=42)] ===
» "LdrLoadDll’
»>> 'LoadLibraryA®
»» '_CorExeMain’
»>> 'packed’
»>> 'NtProtectVirtualMemory'
#www® RBAW Evaluation Metricsg #®®=*
Accuracy Score: 8.976B8765558239234
Precision Score: 1.8
Recall Score: @.9479166666666666
Confusion Matrix:

[[113 @]

[5 91]]
ROC AUC: @,9739583333333333
Precision-Recall: 8.9359288558213717
=== Chosen Features [SFS-Backward using SVC(C=1, kernel="linear', random_state=42)] ===
» "LdrLoadDll’
»>> 'RtlPcToFileHeader”
>> "num sections’
»» "non standard sections’
»>> 'NtProtectVirtualMemory®
#www® RBAW Evaluation Metricsg #®®=*
Accuracy Score: @.97687655568239234
Precision Score: ©.9809247311827957
Recall Score: @.9583333333333334
Confusion Matrix:

[[112 1]

[4 92]]
ROC AUC: @.9747418879056848
Precision-Recall: 8.93833597885718753

W

W

Figure 37

Evaluation metrics SVC(C=1, kernel='linear', random_state=42) w/ selected features (sfs - forward)
Precision-Recall Curve

ADC Curve
10 . L0
Confusion Matrix _ — 7
0 ,f
#
-
09 e S
80 I'
a - Benign = S
08 E L
_ & 06~ #
e K] 0 & 4
E = i »
= o = -
E o7 £ /
F 5 o4 i
9 @ e
1 - Makwars |E C
na i
0z g
=20 ’f
P
b —— ROC curve (AUC = 0.9739583333333333)
0 - Benign 1 - Malware s -
f— Recall & 020055 - N
Pracision-Recsll AUC: 0,9859200556213717 Pradictod abal L, 0.0 Fandom Guess
oo 0.2 0. [N (LX) 10 oD oz o4q e o 1.0
Pecall False Positive Rate (TER)
Evaluation metrics SVC(C=1, kernel='"linear’, random_state=42) w/ selected features (sfs - backward)
Precisieon-Recall Curve AOC Curve
10 Confusion M 10
rd
onfusion Matrix 10 ’7 ’I
#
-
nd o8- i
#
- Benign ga E /,’
oA _ E .6 - rd
& & B E” /’
i = @
o
Eoe g £ d
L= -~
. A] /’
e 1-Malware E L
0.2 rs
-0 4
05 - ROC curve (AUC = 0.974T4188TI056048)
. 0 - B 1- Mal & - o
—— Pracision Aecall AUC: 093335970057 10758 mlunn“di”m labal mhirare a0 ¥ == Random Guess
oo 0.2 0.4 0E [EE:] 10 o 02 0.4 L] FR:] 10

Pcall False Positive Rate (PR

Figure 38

Logistic Regression

Hypertuning

[217]1: 1lr_params = {
‘penalty’: ['11°, "12°'],
'c': [8.801, ©.01, 8.1, 1, 18, 188, 1eee],
‘solver”: ['liblinear’],

(2181 pre_lr = LogisticRegression(random_state=42)
clr = GridSearchCV({estimator=pre_lr, param_grid=1r_params, cv=5, return_train_score=True, scoring="acc
4 >

[219]: start = time.time()
clr.fit(X_train, y_train)
print(time.time() - start)

Fitting 5 folds for each of 14 candidates, totalling 78 fits
12.119877285657959

(228]: print("Params used:", clr.best_params_)
print("Best score (accl:", clr.best_score_)

Params used: {'C"': 18, ‘penalty’: '11', 'solver’': 'liblinear'}
Best score (accl: ©.9958752886507938

Training

[221]: 1r = clr.best_estimator_
1r.fit(X_train, y_train)

LogisticRegression

ogisticRegression(C=1@, penalty='11", random_state=42, solver="liblinear”)

Figure 39

Evaluation Metrics

(2221 1r_ace, 1lr_prec, lr_rec, lr_cm, 1lr_FPR, 1lr_TPR, lr_roc_auc, lr_precision, lr_recall, 1r_j
o5
#AEEE RAW Evaluation Metrics ****=*

Accuracy 5core: 8.9984386220895692
Precision Score: ©.9895833333333334
Recall Score: @.9895833333333334
Confusion Matrix:

[[112 1]

[1 95]]
ROC AUC: B8.09P36633790856848
Precision-Recall: £.9919756778389411

Figure 40

Precision-Recall Curve

0.9

0.8 1

0.7

Precision

0.6

0.5 1

Precision-Recall AUC: 0.9919756778309411

0.0

0.2 0.4 0.6 0.8 10
Recall

Figure 41

Feature Selection

Figure 42

Feature Selection

Evaluation metrics for Logistic Regression Classifer

Confusion Matrix

0 - Benign

True label

1 - Malware

0 - Benign 1 - Malware
Predicted label

Model-based selection LR

100

80

60

40

20

True Positive Rate (TPR)

ROC Curve
1.0 rd
s
’
s
7
4
0.8 p
’
’
d
’
/
0.6 /
’
4
’
’
I’
0.4 #
s’
’
’
’
e
02 ,
’
R4
S ROC curve (AUC = 0.9903668879056048)
0.04 ¥ == Random Guess

0.0

0.2 0.4 0.6 0.8 10
False Positive Rate (FPR)

1lr_selected_features, 1lr_X_train_selected, 1lr_X_test_selected = model_based_selection(clr, 1r, X, y, X
4 O ——

42, solver='liblinear')] ===

»> "terminate@@yAxxZ’

»> "AddVectoredExceptionHandler’

»>> 'EventRegister’

»>> 'FindFirstFileW’

>> 'KDSTUB.d11'

>> 'LdrLoadDl1l’

»>> 'LoadLibraryA’

>» 'RtlPcToFileHeader’

»» "VirtualQuery'

>> 'WaitForSingleObjectEx’
»>> '_CorExeMain'

»> ' _XcptFilter'

>> ‘api-ms-win-core-errorhandling-11-1-8.d11°’
»>> ‘api-ms-win-core-profile-11-1-8.d11°

»> 'mscoree.dll’
»> 'nen standard sections’
»>> 'packed’

>> 'NtProtectVirtualMemory’
L 283

RAW Evaluation Metrics *****

Accuracy Score: @.980880612448191388

Precision Score:
Recall Score: @.96875
Confusion Matrix:

[[112 1]

[3 93]]

ROC AUC: ©.976958221238938
Precision-Recall:

8.9893617821276596

8.9862328845566528

»

Chosen Features [Model-based selection using LogisticRegression(C=18&, penalty='11", random_state=

Evaluation metrics LogisticRegression(C=10, penalty="11', random_state=42, solver='liblinear') w/ selected features (model-based)

Precision-Recall Curve

1.0 4

0.9

0.8 1

0.7

Precision

0.6

0.5 1

|

Precision-Recall AUC: 0.9862328845566528

0.0

Figure 43

Figure 44

0.2 0.4 0.6 0.8 10
Recall

Sequential Selection LR

True label

0 - Benign

1 - Malware

ROC Curve
R . 1.0 4 7
Confusion Matrix ’
100 /
s
7
4
0.8 7

80 _ S

@

£ ,/’

g 081 s
60 & ’

@ 7’

> ’

: e

2 0.4 4 ’,
40 g S

= ’

e
024 7
20 7
4 —— ROC curve (AUC = 0.979950221238938)
0 - Benign 1 - Malware s
9 N 004 ¥ == Random Guess
Predicted label
0.0 0.2 0.4 0.6 0.8 10

False Positive Rate (FPR)

sfs(¥, y, X _train, X_test, y_train, y_test, clr, lr, lr_selected_features)

="liblinear’)] ===

»» 'LdrLoadDll’

»»> 'LoadLibrarya’”

»» '_CorExeMain'

»>> "packad’

>> "NtProtectVirtualMemory’

wxEExE QAW Evaluation Metricg *#x®=
Accuracy Score: 8.9768765558239234

Precision Score: 1.8

Recall Score: @.9479166666666666

Confusion Matrix:
[[113 @]
[5 91]]
ROC AUC: @.9739583333333333

Precision-Recall: 8.9859288558213717

Chosen Features [SF5-Forward using LogisticRegression(C=18, penalty='11", random_state=42, solver

=== Chosen Features [SF5-Backward using LogisticRegression(C=18, penalty="11", random_state=42, solve

1

="liblinear'}] ===

»>» "LdrLoadDll’

»» 'VirtualQuery"®

»» 'mscoree.dll’

>> 'packed”’

»» 'NtProtectVirtualMemory '

whwxE RAW Evaluation Metrics *¥***
Accuracy Score: 8.95215311808478469

Precision Score: 1.8

Recall Score: ©.8958333333333334

Confusion Matrix:
[[113 @]
[18 856]]
ROC AUC: @.9479166666666667

Precision-Recall: 8.9718481116427432

Evaluation metrics LogisticRegression{C=10, penalty="I1", random_state=42, solver='liblinear') w/ selected features (sfs - forward)

Pracision-Hacall Curve

1a

ik]

Pracision

eX.]

oS5
= Pracision-Recall AUC: 0.9859200558213717

True label

o a2 &4 oe "2}
Pecall

1o

Confusion Matrix

Q- Benign
1 - Mlakwars

Q- Benign 1 - Malware
Pradicted labs|

1aa
Aq
-]
449

20

Trua Positive Rata [TPR)

ROC Curve
oy ——
-~
#
+
/
-
0.8 2
'
rd
#
#
L4
0.6 - -~
#
#
#
’
’I
0.4 #
-
#
el
#
rd
0z rd
’

L,

—— ROC curve (AUC = 0.9739583333333333)
0.0+ == Random Guess

o o2 a.a o4 oy 1.0
False Posilive Rale (FPRI

Evaluation metrics LogisticRegressien(C=10, penalty="11", random_state=42, solver="liblinear') w/ selected features (sfs - backward)

Precision-Recall Curve

Pracision

0.6

= Precision-Recall AUC: 0.9718901116427132

0 - Benign

True labes

T
a.o a4z na =L} na

Figure 45

Discussion

Confusion Matrx

1 - Malware | 10 Q

0 - Danign 1- Malware
Pradicted label

&

o0
a0
&0
0
o

True Positive Rate (TPR)

ROC Curve

a8+

=
£l
L

=

=
(5
'

00+

— RO curve [AUC = 0370 IEGEEAGBEE]
== Random Guess

#

T T
oa o 0.4 0.6 na 1.0

Model Method

Accuracy

Precision-
Recall

ROC

Selected Features

Decision
Tree

Model-based

0.962

0.964

0.963

"EVP_sha512"
'K32EnumProcessModules’
' LookupPrivilegeValueW'
'TerminateProcess'

' _commode"

_o__p__ _argc'

'_o__exit'

'_o__wcsicmp'

_wcsicmp'
‘api-ms-win-core-processthreads-1
1-1-1.d11"

SFS-Forward

0.967

0.969

0.967

'K32EnumProcessModules’'
'TerminateProcess'

' _commode"

'_o_ exit'
'api-ms-win-core-processthreads-1
1-1-1.d11"

SFS-Backward

0.967

0.969

0.967

' LookupPrivilegeValueW'
‘TerminateProcess'

' _commode"

'_o__exit'
'api-ms-win-core-processthreads-1
1-1-1.d11"

NONE

0.962

0.97

0.961

N/A

Random

Forest
Model-based

0.976

0.977

0.977

' ?terminate@@YAXXZ'
‘LdrLoadDll’
'TerminateProcess'

' _XcptFilter'
'__C_specific_handler'
'_cexit'

'_exit'

' _fmode'

'_vsnwprintf'
'api-ms-win-core-errorhandling-11
-1-0.d11"

SFS-Forward

0.971

0.974

0.972

' ?terminate@@YAXXZ"'

‘LdrLoadDl1l’

'TerminateProcess'
'__C_specific_handler’
‘api-ms-win-core-errorhandling-11
-1-0.d11"

SFS-Backward

0.971

0.974

0.972

‘LdrLoadDl1l’
'__C_specific_handler’

_exit'

' _fmode'
‘api-ms-win-core-errorhandling-11
-1-0.d11"

NONE

0.981

0.982

0.982

N/A

SVC

Model-based

0.986

0.989

0.985

' ?terminate@@YAXXZ'
‘DeleteCriticalSection’
‘ExitProcess’
'KDSTUB.d11'
'KERNEL32.d11"
'KdInitializeLibrary"'
‘LdrLoadDl1l’
‘LoadLibraryA’
'Rt1PcToFileHeader'
'VirtualQuery'
'_CorkExeMain'

' _XcptFilter'
'mscoree.dll’

‘num sections’
‘mismatched sections'
'non standard sections'
'packed’
‘NtProtectVirtualMemory'

SFS-Forward

0.976

0.986

0.974

‘LdrLoadDl1l’
‘LoadLibraryA’

' _CorExeMain'

'packed’
‘NtProtectVirtualMemory'

SFS-Backward

0.976

0.983

0.975

‘LdrLoadDl1l’
‘Rt1PcToFileHeader'

'num sections’

'non standard sections'
‘NtProtectVirtualMemory'

NONE

0.99

0.99

0.991

N/A

Logistic
Regression

Model-based

0.981

0.986

0.98

' ?terminate@@YAXXZ'
'AddvectoredExceptionHandler'
'EventRegister’

'FindFirstFileW'

'KDSTUB.d11'

‘LdrLoadD1l’

'LoadLibraryA’

'Rt1PcToFileHeader'
'VirtualQuery'
'WaitForSingleObjectEx"'

' _CorExeMain'

' _XcptFilter'
‘api-ms-win-core-errorhandling-11
-1-0.d11"
'api-ms-win-core-profile-11-1-0.d
11’

‘mscoree.dll’

'non standard sections'

'packed’

‘NtProtectVirtualMemory'

SFS-Forward

0.976

0.986

0.974

‘LdrLoadDll’
'LoadLibraryA’

' _CorExeMain'

'packed’
'NtProtectVirtualMemory'

SFS-Backward

0.952

0.972

0.948

‘LdrLoadDll’
'VirtualQuery'
'mscoree.dll’

'packed"’
'NtProtectVirtualMemory'

NONE

0.99

0.992

0.99

N/A

Score (3 s5.f)

Accuracy
ROC

Precision-Recall
—

Decision Tree Random Forest SVC Logistic Regression
Classifier

As shown in the table and graph, SVC and Logistic Regression performed similarly high, and
outperforming the rest. SVC is slightly better than Logistic Regression in the ROC metric, which indicates
the model’s slight superiority in the determine true and false positives and negatives at thresholds. In this
case, given the diversity of the unscaled dataset as well, the binary classification task involved here is
probabilistic, hence SVC was able to make slightly better probability predictions. While better in terms of
accuracy, SVC is also slower than most classification algorithms, hence there is also this tradeoff to
consider —that is, learning times and performance.

Hybrid Features (Normalization of Continuous Features)

Methodology

The static part of the dataset is mostly binary; either 1 for the presence of an imported library or API
function, and 0 otherwise. However, there are also continuous and countable features, such as entropy
and section mismatches. Not to mention that the dynamic part consists of the number of times a function
is called, up to larger magnitudes than a 1 or 0. Hence, this section explores how normalization of these
features can affect the models’ performances.

Scaling

dyn_only = pd.read_csv("dynamic_only feature_matrix.csv").drop(columns=["Unnamed: 8", "sample”, "label"])

dyn_only

NtFreeVirtualMemory NtAllocateVirtualMemory LdrGetDlIHandle NtQuer

] 1.0
1 1.0
2 1.0
3 1.0
4 2.0
691 0.0
692 0.0
693 0.0
694 0.0
695 0.0

696 rows x 113 columns

4

2.0

20

1.0

0.0

2.0

0.0

1.0

1.0

0.0

0.0

2.0

0.0

0.0

0.0

0.0

0.0

Figure 46

mation NtOp
1.0 1.0
1.0 0.0
0.0 0.0
0.0 1.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 1.0
0.0 0.0
0.0 1.0

NtQueryAttributesFile NtOpenFile NtCreateSection

1.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

1.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

1.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

To begin, first we read form a dataset that contains only the dynamic features of both malicious and

benign files.

pe_info = df[["num sections™, "max_entropy”, "mean_entropy”,

pe_info

num sections max_entropy mean_entropy

] 6 6.894936 4.222904
1 7 5984751 3.184293
2 7 5.900025 3.269578
3 6 6.084793 3.917996
4 6 6.152692 3.104720
691 3 5.555429 2.770356
692 10 7942111 1.249254
693 8 7.996797 5.284634
694 7 7.998306 5.555832
695 3 7.983588 3.915370
Figure 47

Then, from the current hybrid dataset in memory, we extract all the records that are to do with PE

"mismatched sections”, “"non standard sections™]]

information — this is the non-binary part of our static dataset.

NtMapV

cont = pd.concat([dyn_only, pe_info], axis=1)

cont
NtFreeVirtualMemory NtAllocateVirtualMemory LdrGetDIIHandle NtQuer mation NtOpenSecti NtQueryAttributesFile NtOpenFile NtCreateSection NtMapV
[} 10 20 10 1.0 1.0 10 10 10
1 1.0 20 1.0 1.0 0.0 0.0 0.0 0.0
2 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0
3 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0
4 20 2.0 20 0.0 0.0 0.0 0.0 0.0
691 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
692 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0
693 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0
694 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0
695 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0

696 rows = 118 columns

Figure 48

Then, we simply combine them so that this can scaled separately from the binary set. This was chosen
because the binary dataset indicates presence of something and is thus of high importance, and should
be preserved. Besides, normalizing the entire table will result in more or less the same performance.

4 »

df_static_only - df.drop(columns-cont_features) # binary

df_static_only

720? 220? 220? 2207
SAutoDeleteVector@D@@QEAA@PEAD@Z $AutoDeleteVector@E@ @QEAA@PEAE@Z SAutoDeleteVector@E@@QEAA@XZ SAutoDeleteVector@PEBG@@QEAA@XZ SCEventloc

0 0.0 0.0 0.0 0.0
1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0
3 0.0 0.0 0.0 0.0
4 0.0 0.0 0.0 0.0
691 0.0 0.0 0.0 0.0
692 0.0 0.0 0.0 0.0
693 0.0 0.0 0.0 0.0
694 0.0 0.0 0.0 0.0
695 0.0 0.0 0.0 0.0

696 rows = 11817 columns

4 >

Figure 49

Then, we drop all the columns in the hybrid dataset that are continuous features. What is left is pure
binary data.

4 >

MM = MinMaxScaler(feature_range=(@, 2))

stat_features = df_static_only.drop(columns=["label"])
labels = df["label’]

cont_scaled = pd.DataFrame(MM.fit_transform(cont), columns=cont.columns)
df_scaled = pd.concat([stat_features, cont_scaled], axis=1)

df_scaled.head()

720? 720? 720? 7207
$AutoDeleteVector@ D@@QEAA@PEAD@Z SAutoDeleteVector@E@@QEAA@PEAE@Z SAutoDeleteVector@E@@QEAA@XZ $AutoDeleteVector@PEBG@@QEAA@XZ $CEventLockd

0 0.0 0.0 0.0 0.0
1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0
3 0.0 0.0 0.0 0.0
4 0.0 0.0 0.0 0.0

5 rows x 11935 columns

J »
l [36]: df_scaled['label’] = labels BV E PR
df_scaled
Figure 50

Finally, we scale the continuous part, then combine the datasets again. Now we have a hybrid dataset
where the continuous features lie between 0 and 2. We use the MinMaxScalar for this. This range was
chosen because of the nature of the rest of the dataset containing values either 1 or 0. Thus, anything
above 1 will be in decimal form, and the magnitude close to 2 reflects their magnitude; this maximum is 1
above 1 the same way 1 is 1 above 0, hence the range in the model’s learning is appropriately affected. 0
is the minimum limit so that the Os in the dynamics are not affected (their absence is still represented).

Other scaler methods were used and considered, such as changing the range to from 0 to 10’, and the
Standard Scalar. Consider the following feature correlation graphs:

Feature Correlation (non scaled)

e Benign
e Malware

15 A ®

10 1

Principal Component 2

T T T
-5.0 -2.5 0.0 2.5 5.0 75 10.0 125
Principal Component 1

Figure 51: PCA Feature Correlation for the original hybrid dataset

Feature Correlation (StandardScaler)

e Benign .
e Malware
40 1
304
o~
™
c
@
1
=]
a
E 20+ .
E L]
T
o
g
£
=
a
104

-10 o] 10 20 30 40
Principal Component 1

Figure 52: PCA Feature Correlation for the original hybrid dataset when scaled using the StandardScalar

MinMaxScaler, 0-10

81 e Benign
e Malware
6
44
~
2 2
v
=
Q L d
g‘ ° L
§ o ce
©
a
5]
=
£ 21
_44
L]
-6
L]
° - °
_g4
T T T T T T T T
-5.0 -2.5 0.0 2.5 5.0 7.5 10.0 125

Principal Component 1

Figure 53: PCA Feature Correlation for the original hybrid dataset using the MinMaxScaler with the range O to 10

MinMaxScaler, 0-2

. e Benign
i Mal
8 . ° alware
e ©
e o e °0°
°
°
61 %y ° ° o g o
°
w0 s °
L) L]
44 .
o
o o’e 0 e
=
n:" L]
S % o
=3 4
E 2 °
o
]
4 °
2 09 ° ° °
& L]
a °
L
° .,
° L]
L]
1 : e’
'o%o
L
o0 g o
—44 °
° o, F‘.’
°
.o.o. ® e
_67\ T T T T T T T
-5.0 -2.5 0.0 2.5 5.0 7.5 10.0 12.5

Principal Component 1

Figure 54: PCA Feature Correlation for the original hybrid dataset using the MinMaxScaler with the range O to 2

Clearly the most distinct among them is the MinMaxScaler of the O to 2 range, as the PCA decomposition
was able to separate distinctly more in this than the rest. The function used to generate this is provided
and explained in the Appendix.

Results

Model

Method

Accuracy

Precision-
Recall

ROC

Selected Features

Decision
Tree

Model-based

0.914

0.931

0.912

' ?terminate@@YAXXZ'

‘DebugBreak’
'Rt1lLookupFunctionEntry’
'TlsGetValue'

'_vsnwprintf'
‘api-ms-win-core-libraryloader-11
-2-0.d11"
'api-ms-win-core-registry-12-1-0.
d11*

'NtMapviewOfSection'

'LdrLoadDll’

'mean_entropy"’

SFS-Forward

0.957

0.96

0.959

' ?terminate@@YAXXZ'

‘DebugBreak’
'Rt1lLookupFunctionEntry’
'TlsGetValue'
'api-ms-win-core-libraryloader-11
-2-0.d11"

SFS-Backward

0.943

0.947

0.945

' ?terminate@@YAXXZ"'
'Rt1lLookupFunctionEntry’
'TlsGetValue'
'api-ms-win-core-libraryloader-11
-2-0.d11"

‘LdrLoadDll’

NONE

0.933

0.95

0.93

N/A

Random
Forest

Model-based

0.962

0.966

0.962

' ?terminate@@YAXXZ'
‘GetCurrentProcessId’
'HeapSetInformation'
'QueryPerformanceCounter'
'__set_app_type'
'__wgetmainargs'

'_exit'
‘api-ms-win-core-libraryloader-11
-2-0.d11"

'memset’

'LdrLoadDll’

SFS-Forward

0.943

0.947

0.945

' ?terminate@@YAXXZ'
'GetCurrentProcessId’
'HeapSetInformation’
‘api-ms-win-core-libraryloader-11
-2-0.d11"

'memset’

SFS-Backward

0.957

0.963

0.957

__set_app_type"’

_exit'
‘api-ms-win-core-libraryloader-11
-2-0.d11"

'memset’

‘LdrLoadDl1l’

NONE

0.976

0.979

0.976

N/A

SVC

Model-based

0.957

0.965

0.956

‘ExitProcess’
'KDSTUB.d11'
'KERNEL32.d11"
'KdInitializeLibrary"'

' _CorExeMain'
‘mscoree.dll’

'packed’
'NtQuerySystemInformation'
‘NtCreateSection’
'NtProtectVirtualMemory'
'LdrLoadDll’
‘LdrUnloadDll*
'GetSystemInfo'

'num sections’
‘mismatched sections'
‘non standard sections'

SFS-Forward

0.923

0.943

0.92

‘packed’
‘NtQuerySystemInformation'
'NtCreateSection’
'LdrLoadD1l’
‘LdrUnloadDll*

SFS-Backward

0.933

0.942

0.933

'ExitProcess’
'KERNEL32.d11'

' _CorExeMain'
'NtQuerySystemInformation’
‘non standard sections'

NONE

0.971

0.974

0.972

N/A

Logistic
Regression

Model-based

0.919

0.934

0.917

'ExitProcess’
'KDSTUB.d11'
'KdInitializelibrary'
'packed’
'NtQuerySystemInformation'
'NtOpenSection'
'NtCreateSection'
'NtProtectVirtualMemory'
‘LdrLoadDl1l’
'LdrUnloadDl1l’
'GetSystemInfo’
‘max_entropy"'
‘mean_entropy"’

'non standard sections'

SFS-Forward

0.919

0.94

0.915

‘packed"’
'NtQuerySystemInformation’
‘NtCreateSection’
‘LdrLoadDl1l’
'LdrUnloadD1l’

SFS-Backward

0.923

0.934

0.924

'NtQuerySystemInformation'
'NtOpenSection’
'NtCreateSection'
‘NtProtectVirtualMemory'
'LdrLoadDll’

NONE

0.99

0.99

0.991

N/A

Dynamic Only

Methodology
reduced_ben_dyn = ben_dyn[ben_dyn['sample'].isin(reduced_hybrid_benign['sample'])].reset_index().drop(columns=["index"])
[224]: reduced ben_dyn Bty & F R
[224]: sample NtFreeVirtualMemory NtAllocateVirtualMemory LdrGetDilHandle NtQuerySysteminformation NtOpenSection NtQueryAttributesFile NtOpenFile
0 agentactivationruntimestarter.exe 1.0 20 10 10 1.0 1.0 1.0
1 AppHostRegistrationVerifier.exe 1.0 20 1.0 1.0 0.0 0.0 0.0
2 appidecertstorecheck exe 1.0 10 0.0 0.0 0.0 0.0 0.0
3 appidpolicyconverter.exe 1.0 0.0 0.0 0.0 1.0 0.0 0.0
4 appidtel.exe 20 2.0 2.0 0.0 0.0 0.0 0.0
343 Wsqmcons.exe 1.0 0.0 0.0 00 0.0 0.0 0.0
344 WSReset.exe 0.0 1.0 10 0.0 1.0 1.0 10
345 wuapihost.exe 1.0 2.0 10 10 1.0 1.0 10
346 WUDFHost.exe 0.0 0.0 2.0 2.0 1.0 1.0 10
347 wusa.exe 1.0 1.0 1.0 10 10 1.0 1.0

348 rows = 101 columns

Figure 55

We wish to see how the models perform using only dynamic data, thus we want to create ensure
separate datasets for both malware and benign executables. From the discussion in Subtask 2, here we’re
working with the undersampled benign dataset. In the above, we simply extract all the records in the
dynamic dataset whose samples exist in our undersampled benign dataset. We do this because the
dynamic dataset contains many other benign programs, and the undersampled benign dataset contains
also static features; hence we cannot get only the dynamic features of the undersampled so easily in a
single move.

reduced_ben_dyn['label’] = @

mal_dyn_df['label'] = 1

dynamic_only - pd.concat([reduced_ben_dyn, mal_dyn_df], axis-8).fillna(@).reset_index(drop-True)
dynamic_only

sample NtFreeVirtualMemory NtAllocateVirtualMemory LdrGetDllHandle NtQuerySysteminformation NtOpenSection NtQueryAttrib

] agentactivationruntimestarter.exe 1.0 2.0 1.0 1.0 1.0
1 AppHostRegistrationVerifier.exe 1.0 2.0 1.0 1.0 0.0
2 appidcertstorecheck.exe 1.0 1.0 00 0.0 00
3 appidpolicyconverter.exe 1.0 0.0 0.0 0.0 1.0
4 appidtel.exe 2.0 2.0 20 0.0 00
691 fb4256038010f3c2182f060deffaal ffedcessfs5ad4ded. ., 0.0 0.0 0.0 0.0 0.0
692 fc6a4a187bd350e3667 1f5f585735cda2cc9241d 1e5¢9d.. 0.0 1.0 0.0 0.0 0.0
693 fd828c534b0e6ced46192311ddoadado8ed2fcco1felf.. 0.0 0.0 o0 00 1.0
694 ffDceb03c1063e6ebcTc6b7de981c266b81d6304749296.., 0.0 1.0 0.0 0.0 0.0
695 ffeb8599327f00bfd6bec16e6535b82f27a804f4877799.., 0.0 0.0 0.0 0.0 1.0

696 rows = 115 columns

: . |

I [241]:|dynami:ionly.toicsu("dyﬁamicioﬁlyifeatureimatrix‘cs\f“) m ™4 & F i|
Figure 56

Finally, we combine this with the dynamic dataset for the malicious executables; hence obtaining a
dataset for both malware and benign files but which only contain the dynamic features.

Results

Model

Method

Accuracy

Precision-
Recall

ROC

Selected Features

Decision
Tree

Model-based

0.938

0.955

0.935

‘NtAllocateVirtualMemory'
'LdrGetDl1lHandle'
'NtQuerySystemInformation’
‘NtProtectVirtualMemory'
‘NtClose*
'NtDeviceIoControlFile'
‘LdrLoadDl1l’
‘NtTerminateProcess'
'NtCreateFile'
'RegEnumValueW

SFS-Forward

0.957

0.969

0.955

'NtProtectVirtualMemory'
'NtDeviceIoControlFile'
‘LdrLoadDl1l’
'NtTerminateProcess'
'RegEnumValueW’

SFS-Backward

0.914

0.925

0.915

'LdrGetDl1lHandle'
'NtProtectVirtualMemory'
‘LdrLoadDl1l’
‘NtCreateFile*
'RegEnumValueW’

NONE

0.914

0.935

0.91

N/A

Random
Forest

Model-based

0.947

0.963

0.944

'NtFreeVirtualMemory"'
'NtAllocateVirtualMemory"'
‘LdrGetDl1Handle’
'NtQueryAttributesFile’
'NtProtectVirtualMemory'
‘NtClose*

‘LdrLoadDl1l’

'NtOpenKey'
'NtQueryValueKey"'
‘GetFileType'

SFS-Forward

0.967

0.978

0.964

‘NtFreeVirtualMemory'
‘LdrGetDl1Handle'
'NtProtectVirtualMemory'
'LdrLoadDll’
'NtQueryVvalueKey"'

SFS-Backward

0.971

0.98

0.97

'NtFreeVirtualMemory'
'NtQueryAttributesFile'
'NtProtectVirtualMemory'
'LdrLoadDll’
'NtQueryVvalueKey"'

NONE

0.952

0.972

0.948

N/A

SVC

Model-based

0.962

0.972

0.96

'NtFreeVirtualMemory'
‘NtAllocateVirtualMemory'
'LdrGetDl1Handle'
'NtOpenSection’
'NtQueryAttributesFile'
'NtOpenFile'
'NtCreateSection'
'NtMapViewOfSection'
‘NtProtectVirtualMemory'
‘NtClose'

'LdrLoadDll’

'NtOpenKey'
'NtQueryValueKey"'
'NtTerminateProcess'
'RegOpenKeyExW'
'RegQueryValueExW"'
'RegCloseKey"
‘NtCreateMutant'
"WSAStartup’
'GetFileAttributesW'
'GetFileType'
'FindResourceExW'
‘NtOpenThread"
'NtQueryInformationFile'
' LookupPrivilegeValueW'
'GetSystemDirectoryW'
'RegEnumKeyExW'
'GetSystemWindowsDirectoryW'

'NtReadFile'
'RegQueryInfoKeyW"

SFS-Forward

0.923

0.933

0.925

'NtOpenSection’
‘NtQueryAttributesFile'
‘LdrLoadDl1l’
'NtQueryValueKey"'
'RegQueryInfoKeyW"

SFS-Backward

0.919

0.949

0.912

'NtOpenSection’
'NtProtectVirtualMemory'
‘LdrLoadDl1l’

'NtOpenKey'
'NtQueryInformationFile'

NONE

0.957

0.969

0.955

N/A

Logistic
Regression

Model-based

0.923

0.939

0.921

'NtFreeVirtualMemory"'
'NtAllocateVirtualMemory"'
‘LdrGetDl1Handle’
'NtQuerySystemInformation’
'NtOpenSection’
‘NtQueryAttributesFile'
‘NtOpenFile'
'NtCreateSection'
'NtMapViewOfSection'
‘NtProtectVirtualMemory'
‘NtClose*
'NtDeviceIoControlFile'
'LdrLoadDll’

‘NtOpenKey'
'NtQueryValueKey"'
'NtTerminateProcess'
'RegOpenKeyExW'
'RegQueryValueExi'
'NtCreateMutant'
"WSAStartup’
‘GetFileAttributesW'
‘GetFileType'
'NtCreateFile'
'NtOpenThread’
‘NtQueryInformationFile'
'RegEnumKeyExW'
'NtReadFile'
'RegQueryInfoKeyW'

SFS-Forward

0.88

0.919

0.872

'LdrLoadD1l’
‘NtQueryValueKey"'
'RegQueryValueExi'
'NtReadFile’
'RegQueryInfoKeyW'

SFS-Backward

0.933

0.941

0.934

'NtOpenSection’
'NtQueryAttributesFile'
‘LdrLoadD1l’
'NtQueryValueKey"'
‘NtQueryInformationFile'

NONE

0.895

0.911

0.895

N/A

Static Only

Methodology
Data Preparation

dynamic_only = pd.read_csv("dynamic_only feature_matrix.csv").drop(columns=["Unnamed: @"])

dynamic_only

sample NtFreeVir y NtA y LdrGetDlIHandle NtQuerySy ‘mation NtOpenSecti NtQuery/
[+] agentactivationruntimestarter.exe 1.0 2.0 1.0 1.0 1.0
1 AppHostRegistrationVerifier.exe 1.0 2.0 1.0 1.0 0.0
2 appidcertstorecheck.exe 1.0 1.0 0.0 0.0 0.0
3 appidpolicyconverter.exe 1.0 0.0 0.0 0.0 10
4 appidtel.exe 2.0 2.0 2.0 0.0 0.0
691 fb4256038010fac2182f060deffaalffelcebbf55added. ., 0.0 0.0 0.0 0.0 00
692 fc6adal87bd350e36671f5f585735cda2cc9241d1e5¢9d... 0.0 1.0 0.0 0.0 00
693 fdB828c534b0ebce946192311dd9fadad98e82fcc91felf... 0.0 0.0 0.0 0.0 1.0
694 ff0ceb03c1063e6ebc7cbb7de981c266b81d6304749296... 0.0 1.0 0.0 0.0 0.0
695 ff6hB8599327f09bf46bec16e6535b82f27a804f4877799... 0.0 0.0 0.0 0.0 1.0
696 rows = 115 columns
4 >

dynamic_only.columns

Index(['sample’, 'NtFreevirtualMemery', ‘NtAllocateVirtualMemory®,
‘LdrGetDllHandle', °NtQuerySystemInformation', 'NtOpenSection®,

Figure 57

Although we could have used the dataset from 7.3HD, note that the not all malware were excutabled.
Hence, we need to extract them here again separately. Likewise, the dataset in 7.3HD was larger (990
rows) compared to this tasks at 698; hence, we also need to under sample so that the compassion
remains fair for all the methods discussed above. The method to get only the static features is rather
simple. As we already have a dataset of dynamic features, we simply find these columns in the hybrid
dataset and drop them.

dynamic_only.columns

Index(['sample’, 'NtFreeVirtualMemory', °NtAllocateVirtualMemory',
'LdrGetDllHandle', 'NtQuerySystemInformation’, 'NtOpensection’,
'NtQueryAttributesFile', "NtOpenFile', ‘NtCreateSection’,

'NtMapViewOfSection®,

'RegEnumValuel’, ‘"GetFileSizeEx', 'SetFileInformationByHandle',

'GetSystemDirectoryA’, 'NtGetContextThread’,

‘CreateToolhelp32Snapshot”’,

'Process32Firstl’, "Process32NextW’, 'OutputDebugStringA®,

‘GetFileInformationByHandle'],
dtype="cbject', length=115)

hybrid = pd.read_csv("hybrid_feature_matrix.csv").drop(columns=["Unnamed: &"])

hybrid
sample
0 control.exe
1 upnpcont.exe
2 ThumbnailExtractionHost.exe
3 provlaunch.exe
4 tsdiscon.exe
691 fb4256038010fac2182f060deffaalffelcebbf55added. ..
692 fcbada187bd350e3667 1f5f585735¢cda2cc9241d1e5¢9d...
693 fdB28c534b0e6ce946192311dd9fadadIBeb2fccalfelf..
694 ff0ceb03c1063e6ebc7c6b7de981c266b81d6304749296...

Figure 58

696 rows = 11936 columns

4

2207

$AutoDeleteVector@D@@QEAA@PEAD@Z

static_only = hybrid.drop(columns=dynamic_only.columns)

static_only['label’] = dynamic_only['label’]

static_only.info()

<class ‘'pandas.core.frame.DataFrame’>
RangeIndex: 696 entries, 8 to 695
Columns: 11822 entries, ??8?$AutoDeleteVector@D@@QEAAQPEAD@Z to label
dtypes: float64(11367), inté4(455)
memory usage: 62.8 MB

Figure 59

Thus, we are left with just the static dataset. Note that the labeling operation on line 12 is because we

had dropped it earlier in line 11.

Results

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

SAutoDeleteVector@E@ @QEAA@PEAE@Z

720?

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

70?

$AutoDeleteVector@E@ @QEAA@XZ

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

Model

Method

Accuracy

Precision-
Recall

ROC

Selected Features

Tree

Decision

Model-based

0.938

0.955

0.935

'EVP_Cipher'
'Rt1FreeHeap’
'VirtualQuery'
amsg_exit'
'_c_exit’

' _lock"'
'getservbyname’
'ntdll.dll’
‘strerror’
'strftime’

SFS-Forward

0.957

0.969

0.955

'EVP_Cipher'
'VirtualQuery'
'_amsg_exit'
'_c_exit’
'ntdll.d1l’

SFS-Backward

0.914

0.925

0.915

'EVP_Cipher'
'VirtualQuery'
'_amsg_exit'
'_c_exit’
‘ntdll.d11’

NONE

0.914

0.935

0.91

N/A

Random
Forest

Model-based

0.947

0.963

0.944

' ?terminate@@YAXXZ'
'GetCurrentProcess’
‘GetModuleHandleW'
'GetSystemTimeAsFileTime'
'"HeapSetInformation'
'Sleep’
'__C_specific_handler'
'__setusermatherr’
_initterm’

exit’

SFS-Forward

0.967

0.978

0.964

' ?terminate@@YAXXZ'
‘GetCurrentProcess’
‘GetModuleHandleW'
'__setusermatherr’
_initterm’

SFS-Backward

0.971

0.98

0.97

' ?terminate@@YAXXZ'
'GetSystemTimeAsFileTime'
'__ C_specific_handler'
'__setusermatherr’

‘exit'

NONE

0.952

0.972

0.948

N/A

SVC

Model-based

0.962

0.972

0.96

' ?terminate@@YAXXZ'
‘ConvertStringSecurityDescriptorT
oSecurityDescriptori’
'DeleteCriticalSection’
‘EncodePointer’
‘EtwEventEnabled’
'EtwEventRegister’
'EtwEventUnregister’
‘EtwEventWrite'
'ExitProcess’
'KDSTUB.d11'
'KERNEL32.d11"
‘KdInitializelLibrary'
‘LoadLibraryA’
'OpenProcessToken"
'PrivilegeCheck’
'RegFlushKey"'
'RegGetValuel"'
'RtlAllocateHeap"’
'Rt1PcToFileHeader'
'Rt1ReAllocateHeap’

' _CorExeMain'

' _XcptFilter'
‘mscoree.dll’
‘ntdll.d11’

'num sections'
'‘mismatched sections'
‘non standard sections'
'packed’

SFS-Forward

0.923

0.933

0.925

' ?terminate@@YAXXZ'
'LoadLibraryA’
'RegGetValuel"'
‘ntdll.d1l’

'packed’

SFS-Backward

0.919

0.949

0.912

‘LoadLibraryA’
'RegGetValuel"
'Rt1PcToFileHeader'
‘num sections’

‘non standard sections'

NONE

0.957

0.969

0.955

N/A

Logistic
Regression

Model-based

0.923

0.939

0.921

'FreeEnvironmentStringsw'
'GetSystemTimeAsFileTime'
'InitializeCriticalSection’
'KDSTUB.d11'

'LoadLibraryA’
'RegGetValuel'
'Rt1PcToFileHeader'
'VerifyVersionInfoW'
'VirtualAlloc'

' _CorExeMain'

' _XcptFilter'
'_initialize_narrow_environment'

'api-ms-win-core-processthreads-1
1-1-0.d11'
‘api-ms-win-core-rtlsupport-11-1-
0.d11’
‘api-ms-win-crt-string-11-1-0.d11

‘ntdll.d11’

‘non standard sections'
'packed"’
'VCRUNTIME140.d11"

SFS-Forward

0.88

0.919

0.872

'FreeEnvironmentStringswW'
'GetSystemTimeAsFileTime'

' _XcptFilter'
'api-ms-win-core-processthreads-1
1-1-0.d11'

‘ntdll.d11’

SFS-Backward

0.933

0.941

0.934

'GetSystemTimeAsFileTime'
‘RtlPcToFileHeader'
'api-ms-win-core-processthreads-1
1-1-0.d11'

‘non standard sections’
'VCRUNTIME140.d11"

NONE

0.895

0.911

0.895

N/A

Discussion & Analysis
Hybrid vs Normalized Hybrid

Accuracy

Precision-Recall

ROC

0.8 f--1====

Score (3 s.f.)
o
Y
\
{

o
=
'
H

0.2 -1

Hybrid
s Hybrid N

0.0 -
Decision Tree Randem Forest svC

Classifier

Logistic Regression

o
o
|

Score (3 s.f.)

1
IS
H

0.2 ==

0.0 -

Decision Tree

Figure 60: Hybrid vs Normalized Hybrid performance

Hybrid
s Hybrid N

Random Forest Ve
Classifier

Logistic Regression

0.8 -1

Score (3 s.f.)
=4
@

1
kS

0.2 {1

0.0 -

Hybrid
Emm Hybrid N

Decision Tree Random Forest sV

Classifier

Logistic Regression

Despite the supposed distinct PCA values, the normalized dataset resulted in the models
underperforming compared to the non-normalized dataset models. This can be seen across all the
metrics. We see a trend of increasing scores as we move from DecisionTree to Logistic Regression. This
implies that the strictness and compactness of the scaling (0 to 2) for dataset values that could go up the
hundreds actually makes those features lose value, as they blend too well with the rest of the scaled

features on the integer, if not, first decimal level. As usual, SVC was the highest performing model among
the ones trained on the normalized data.

This suggests that hybrid modeling with raw data is the better approach, but also that while the variance
between the values (binary vs continuous) remain large, the hybrid approach’s abundance of each
pattern allows for both to retain their significance. That is, there is enough (10000+) features of the
binary data to withstand the 100+ dynamic features and vice versa for both features to hold. Likewise,
given the current hybrid approach, the data no longer being binary makes it tougher for the tree

algorithms than it is for point-based algorthms such as SVC and LogisticRegression — hence their clear

outperformance here.

Static vs Dynamic

Accuracy

Precision-Recall

ROC AUC

L0

1.0

0.8

0.8

e
o

o
o

0.8

Score (3 s.f.)

o
ks

Score (3 s.f)

o
>

e
o

Score (3 s.f.)

0.2

0.2

o
ks

Dynamic
Static

0.0

T T T
Decision Tree Random Forest e

T
Logistic Regression

0.0

Dynamic
Static

0.2

Dynamic
Static

T
Decision Tree

T T
Random Forest Ve

T
Logistic Regression

0.0

T T
Decision Tree

Classifier

Classifier

T T
Random Forest Logistic Regression

Classifier

sV

Figure 61: Static vs Dynamic performance

Next we move on to comparing static-only and dynamic-only modeling. Note that the equal dataset sizes
are smaller than in 7.3HD for the comparison to be fair. We see that the static approach is superior on all

three metrics for all four classifiers. This is to be expected, given the 10000+;100+ ratio of the features;
there is simply a more static features.

Dynamic vs Hybrid
Accuracy Precision-Recall ROC AUC
10 LD remsmm e e e e
0.8 - — = 0.8 T--J-—---- T -~ .-~
Z 0.6 == = - Z 0.6 TP~~~ .-
@ @ @
2 2 2
e < e
=] o =]
S I+ S
@ Il @
0.4 = = 04 - .,
0.2 - = = DFRESS e s e
BN Hybrid = Hybrid . Hybrid
Dynamlc Dynamlc Dynamic
0.0 -
Decision Tree Randorm Forest Logistic Regression

Classwﬁer

Figure 62: Dynamic vs Hybrid performance

Decision Tree

Random Forest
C\asswﬁer

Logistic Regression

Decision Tree

Random Forest sve Logistic Regression

Classifier

Similarly, the hybrid approach will obviously be better than the dynamic approach, shown by its superior
on all three metrics. The hybrid approach contains the dynamic approach alongside more training data
(static features) so it is to be expected that it will outperform. One key thing to note is the “curve” with

each metric for the dynamic approach —

increasing as we move from left to right, only to dip with logistic

regression. This is in contrast with the right-ward rising slope of the hybrid metrics, which is what we’ve
seen earlier as well. This is due to the vast variance of the dynamic dataset, unscaled too, thus the logistic
classification model would have trouble grouping features in its curves.

Hybrid vs Static

Accuracy Precision-Recall ROC AUC

L0

10 L0

0.8 T--

0.8 1

0.8 T

e
o
4

0.6 7

0.6 T

Score (3 s.f.)
Score (3 s.f)

Score (3 s.f.)

o
ks

0.4

0.4 1

0.2 -

0.2 -

0.2 1--

s Hybrid
Static

= Hybrid
Static

== Hybrid
Static

0.0 - 0.0- 0.0 -

Decision Tree Random Forest e Logistic Regression Decision Tree Random Forest svC Logistic Regression Decision Tree Random Forest sV

Logistic Regression
Classifier Classifier Classifier

Figure 63: Hybrid vs Static performance

This is where things get interesting. The results above show little if not slight discrepancies between the
performance of the hybrid and static approaches. Given that SVC is our highest performing model, we
note that the hybrid slightly outperforms the static approach in all three metrics. This indicates that the
100+ dynamic data made a difference in the end. Consequentially, this would also prevent the hybrid
method from overfitting given the non-uniformity though controlled nature of the training data. Now,

while the graphs indicate only a slight nudge towards the hybrid approach, next we will consider how
they affected feature selection.

Feature Selection — Hybrid vs Static

Accuracy
mmm Hybrid
Static-only
4,
&2

& & 2 & & &
¢ & & & & § ¥

1.0

0.

0o

0.

o

Score (3 s.f)

o
ES

o
NI

0.

=3

Figure 64: feature-selected Hybrid vs Static performance on accuracy

Precision-Recall

g
=}

o
o

o
o

o
ES

Score (3 5.f.)

o
]

o
=]

B Hybrid
Static-only
2 b3 2 g b3 o] 4 %
N N o el N &
& ” L 33 Y 23
& & & 2 & S &
& & N

@ < ® ®
& & & & e Fd
& & 5 o o &
Figure 65: feature-selected Hybrid vs Static performance on precision-recall
ROC
1.0
0.8
;g 08 mmm Hybrid
@ Static-only
S o0a
0.2
0.0
@ & 2 @ « @ @ « » @ % 2
6\,@ P P Qs,\'\ & P .;\U\h & P &,‘h & e
& & & & o & & N

Figure 66: feature-selected Hybrid vs Static performance on ROC AUC

Given the significantly small differences between the hybrid and static models, we thus examine and only
examine their relationships here; the other approaches have lower performance scores and are thus not
considered, but their relative feature selection metrics have been presented above. While they generally
underperform compared to no feature selection at all, we see in the above that generally for all three
metrics, the hybrid model (for all classifiers) after undergoing feature selection performs much better
than when the static model undergoes feature selection.

This is due to the significance of the dynamic features at play in the hybrid module. In fact, it can be
argued that certain static-dynamic pairings are dominant; to demonstrate, if a static feature is common

among malicious samples, and a given sample calls its corresponding APl immediately at runtime, then it
is grounds for suspicion (such as registry key modification).

Likewise, the significant reduction in feature size to just the important ones indicates a faster
performance overall, with little overhead in reduction of accuracy. Thus, the hybrid approach
outperforms the static approach in this regard entirely.

Notice how the highest performing model on three metrics was the SVC using model-based feature
selection. Note that DT = DecisionTree, RF = RandomForest, SVC = SupportVectorMachine, LR = Logistic
Regression, MB = Model-based, SFS-F = Sequential Feature Selection (forward), and SFS-B = Sequential
Feature Selection (backward).

Static vs Dynamic vs Hybrid

Accuracy Precision-Recall ROC AUC
10 1.0

0.8 -

0.8 1

0.8 1

e
o
4

o
o
L

e
o

Score (3 s.f.)
Score (3 s.f)
Score (3 s.f.)

o
ks

o
>
L

o
ks

0.2 -

0.2 -

0.2 1--

s Hybrid
Dynamic
Static

= Hybrid
Dynamic
Static

= Hybrid
Dynamic
Static

0.0 - 0.0-

Decision Tree Random Forest SVC Logistic Regression Decision Tree Random Forest SVC Logistic Regression
Classifier Classifier

0.0 -

Decision Tree Random Forest S¥C Logistic Regression
Classifier

This best sums up the task. While the hybrid and static models have only slight descendances, it is shown
that dynamic features alone are far too scarce compared to the other two. Similarly, the hybrid model,
making use of the best of both worlds, outperforms the rest, even if by only a little, generally in all three
metrics; particular via SVC, our highest performing model. This difference, no matter how minute, is
paramount to stopping or detecting at least one more malicious program out there from executing. Thus,

we have presented statistical evidence and logical justification for why the hybrid model is the best
approach.

Conclusion

In this task, we extracted dynamic features from the set of benign and malicious executables used in Task
7.3HD. | then combined them with the corresponding static features, and trained the same four
classifiers: Decision Tree, Random Forest, SVC, and Logistic Regression. We presented various results
exploring different forms of approaches; namely the pure hybrid approach, normalization, the pure
dynamic approach, and the pure static approach (i.e., task 7.3HD). With respect to the hybrid data, the
SVC performed the best in all three metrics. Despite the little difference between the hybrid and static

models, we have also explored how both approaches affected feature selection, in which the hybrid
approach was the clear winner.

Links
OneDrive: https://deakin365-

my.sharepoint.com/:f:/g/personal/s223058093 deakin edu au/EqUeQbbxoj90nwiB3Wk PYgBsaAlrLuK
szKDIJFoOxWkpQre=Q7iXol

References

[1] D3vKnlght, “APIMiner”. github.com, 2015. [Online Repository] Available:
https://github.com/D3vKnlght/APIMiner (accessed 26 May, 2025)

[2] Simon, D. “Data-Challenge_Anomaly-Detection”. github.com, 2021. [Online Repository] Available:
https://github.com/simondelarue/Data-Challenge Anomaly-Detection (accessed 26 May 2025)

https://deakin365-my.sharepoint.com/:f:/g/personal/s223058093_deakin_edu_au/EqUeQbbxoj9OnwiB3Wk_PYgBsaA1rLuKszKDlJFoOxWkpQ?e=Q7iXol
https://deakin365-my.sharepoint.com/:f:/g/personal/s223058093_deakin_edu_au/EqUeQbbxoj9OnwiB3Wk_PYgBsaA1rLuKszKDlJFoOxWkpQ?e=Q7iXol
https://deakin365-my.sharepoint.com/:f:/g/personal/s223058093_deakin_edu_au/EqUeQbbxoj9OnwiB3Wk_PYgBsaA1rLuKszKDlJFoOxWkpQ?e=Q7iXol
https://github.com/D3vKn1ght/APIMiner
https://github.com/simondelarue/Data-Challenge_Anomaly-Detection

Appendix

#adapted from Simon, D (2621). Data Challenge - Machine Learning for anomaly detection [Python Code]. Github. https://github.com/simondelarue/Data-Challenge_Anom
def plotFeatureCorrelation(df, title):
pca = PCA(n_components=2)

normal_features = df[df[label’] == @]

normal_features = normal_features.drop(columns="1abel")
fraud_features = df[df["label’] == 1]

fraud_features = fraud_features.drop(columns="1label")

normal_pca = pca.fit_transform(normal_features)
fraud_pca = pca.transform(fraud_features)

fig, ax = plt.subplots(figsize=(7,7), dpi=168)

ax.scatter(normal_pca[:, @], normal_pcal:, 1], ¢='g", alpha=8.6, s=75, marker="
ax.scatter(fraud_pca[:, @], fraud_pca[:, 1], c="r’, alpha=0.6, s=75, marker="."
ax.set_ylabel('Principal Compcnent 2')

ax.set_xlabel('Principal Component 1')

ax.legend()

ax.set_title(title)

", label="Benign')
» label="Malware')

Figure 67

This function was adapted from [2]. Essentially it first separates the dataset by the binary labels, then
applies PCA on both dataframes to two new scaled ones. These are then scatterplotted to showcase how
closely packed malicious and benign (labeled) records are when reduced to 2 dimensions.

